TCDB is operated by the Saier Lab Bioinformatics Group

1.A.23 The Small Conductance Mechanosensitive Ion Channel (MscS) Family

The MscS family (the SwissProt UPF0003 family) is a group of topographically diverse proteins, some of which are functionally characterized. They exhibit homology in only a restricted region. Early electrophysiological studies with E. coli suggested the presence of two distinguishable mechanosensitive ion channels, one with large conductance (MscL; TC #1.A.22) and one with small conductance (MscS; this family) (Martinac et al., 1987, 1990). Cytoplasmic beta domains appear to be new gating elements in MscS channels (Koprowski et al., 2011).  Open and closed conformational states of the heptameric channel have been proposed and discussed (Pliotas et al. 2012).

Application of a ramp of negative pressure to a patch excised from an E. coli giant spheroplast gave (1) a small conductance (MscS; ~1 nS in 400 mM salt) with a sustained open state, and (2) a large conductance (MscL; ~3 nS) with faster kinetics, activated at higher pressure. MscS was reported to exhibit a weak anionic preference and a voltage dependency, tending to open upon depolarization. Activation by membrane-intercalating amphipathic compounds suggested that the MscS channel is sensitive to mechanical perturbations in the lipid bilayer. It was suggested that MscS plays a role in fast osmoregulatory responses. How these channels may respond to change in the mechanical environment the lipid bilayer provides is discussed by Kung et al. (2010).

Mechanosensitive channels function as electromechanical switches with the capability to sense the physical state of lipid bilayers. The X-ray crystal structures of MscL and MscS allow identification of the types of protein motions associated with the opening and closing of these structurally unrelated channels, while providing the framework to address a mechanism of tension sensing that is defined by channel-lipid interactions (Perozo and Rees, 2003). Functional, structural and dynamic data offer fresh insights into the molecular basis of gating for these membrane proteins.

Mutations in the genes encoding the KefA (AefA) and YggB proteins of E. coli block the MscS mechanosensitive channel activity. The principal one is affected by knockouts of YggB, while the minor one is affected by knockouts of KefA. These two channels open in response to pressure changes during osmotic downshift just below those that cause cell disruption and death (Biggin and Sansom, 2003; Pivetti et al., 2003). The C-termini of the YggB heptameric channel move apart upon channel opening and may serve as the gate (Koprowski and Kubalski, 2003). A high resolution 3-D structures are available (Bass et al., 2002; Lai et al. 2013). Crosslinking studies indicate that a large conformational change accompanies the open to the closed configuration (Miller et al., 2003b).

Homologues of YggB are found in Gram-negative, Gram-positive and cyanobacteria, in archaea, in yeast and in plants, but not in animals (Booth and Louis, 1999). One archaeon, Haloferax volcanii, exhibits mechanosensitive channels similar in conductance and mass to YggB of E. coli, but the sequences of these channel proteins are not available (Le Dain et al., 1998). Two sequenced MscS homologues have been functionally characterized from Methanococcus jannaschii (Kloda and Martinac, 2001a,b).

MscS family homologues vary in length between 248 and 1120 amino acyl residues, but the homologous region that is shared by most of them is only 200-250 residues long, exhibiting 4-5 TMSs (Miller et al., 2003b). The topologies of these proteins differ drastically. YggB (286 aas; spP11666) exhibits 4-5 putative transmembrane α-helical spanners (TMSs); KefA (AefA) (1120 aas; spP77338) exhibits 11 TMSs; YjeP of E. coli (1107 aas; spP39285) exhibits 11 TMSs; YbiO of E. coli (741 aas; spP75783) exhibits 10 TMSs; and YbdG of E. coli (415 aas; spP39455) exhibits 5 TMSs. Moreover, of the M. jannaschii homologues, MJ0170 (350 aas; spQ57634) exhibits 4-5 TMSs; MJ0700 (324 aas; spQ58111) exhibits 4 TMSs; and MJ1143 (361 aas; spQ58543) exhibits 5-6 TMSs. This topological variability is an unusual characteristic of a family of homologous transport proteins, and its functional significance cannot be evaluated at this time. It is possible that transport mechanisms will vary in accordance with topology. On the other hand, only 2 TMSs, common to all of these proteins may comprise the channel (Booth and Louis, 1999).

The E. coli and Synechocystis genomes include five recognized paralogues of the MscS family while the Bacillus subtilis and Methanococcus jannaschii genomes include three paralogues. KefA is multidomain and may be multifunctional. It has a large (470 amino acyl residues) N-terminal extracytoplasmic domain that may interact with the peptidoglycan cell wall, a central hydrophobic region including the 11 TMSs (residues 480-940), and a C-terminal cytoplasmic domain (residues 941-1120). Only the last four TMSs and the C-terminal hydrophilic domain are homologous to the much shorter YggA protein. One of the Synechocystis homologues (slr1575) possesses a C-terminal domain homologous to cyclic AMP-dependent protein kinaseA regulatory subunits (Ochoa de Alde and Houmard, 2000). It may therefore be a cyclic nucleotide-regulated channel.

A homologue of MscS channels in Erwinia chrysanthemi, BspA, is encoded within an operon that includes the psd gene encoding phosphatidyl serine decarboxylase. In high salts medium, glycine betaine initially is taken up normally in a bspA mutant, but uptake is followed by reduced glucose uptake and release of glycine betaine without loss of viability. It was suggested that BspA is not a channel but instead senses the intracellular glycine betaine and the extracellular salt concentrations, and thus serves as a receptor for osmoadaptation (Touzé et al., 2001).

In bacterial and animal systems, mechanosensitive (MS) ion channels are thought to mediate the perception of pressure, touch, and sound. Ten MscS-Like (MSL) proteins are encoded within the genome of Arabidopsis thaliana. MSL2 and MSL3, along with MSC1, a MscS family member from green algae, are implicated in the control of organelle morphology. Haswell et al. (2008) characterized MSL9 and MSL10, two MSL proteins found in the plasma membrane of root cells. MSL9 and MSL10, along with three other members of the MSL family, are required for MS channel activities detected in protoplasts derived from root cells.

The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. Wang et al. (2008) described a 3.45 angstrom-resolution structure in an open conformation. MscS has a pore diameter of ~13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation (Wang et al., 2008). The levels of both MscL and MscS channels in Bacillus subtilis are high during exponential phase growth, very low in stationary phase and non-detectable in spores (Wahome et al., 2009). 

The E. coli MscS (EcMscS) has been extensively studied, but it may display characteristics not widely conserved in this protein family. With numerous members now electrophysiologically characterized, these channels displays a breadth of ion selectivity with both anion and cation selective members. The selectivities of these channels may be relatively weak in comparison to voltage-gated channels. Residues important for selectivity in MscS homologs suggest different selectivity mechanisms than those employed by voltage gated K+, Na+, Ca2+ and Cl- channels whose selectivity filters are housed within their transmembrane pores. Cox et al. 2013 attempted to unravel the potential physiological relevance of these differences.

The generalized transport reaction proposed for MscS channels is:

osmolytes (in) and ionsLai et al. 2013). Crosslinking studies indicate that a large conformational change accompanies the open to the closed configuration (Miller et al., 2003b).

Homologues of YggB are found in Gram-negative, Gram-positive and cyanobacteria, in archaea, in yeast and in plants, but not in animals (Booth and Louis, 1999). One archaeon, Haloferax volcanii, exhibits mechanosensitive channels similar in conductance and mass to YggB of E. coli, but the sequences of these channel proteins are not available (Le Dain et al., 1998). Two sequenced MscS homologues have been functionally characterized from Methanococcus jannaschii (Kloda and Martinac, 2001a,b).

MscS family homologues vary in length between 248 and 1120 amino acyl residues, but the homologous region that is shared by most of them is only 200-250 residues long, exhibiting 4-5 TMSs (Miller et al., 2003b). The topologies of these proteins differ drastically. YggB (286 aas; spP11666) exhibits 4-5 putative transmembrane α-helical spanners (TMSs); KefA (AefA) (1120 aas; spP77338) exhibits 11 TMSs; YjeP of E. coli (1107 aas; spP39285) exhibits 11 TMSs; YbiO of E. coli (741 aas; spP75783) exhibits 10 TMSs; and YbdG of E. coli (415 aas; spP39455) exhibits 5 TMSs. Moreover, of the M. jannaschii homologues, MJ0170 (350 aas; spQ57634) exhibits 4-5 TMSs; MJ0700 (324 aas; spQ58111) exhibits 4 TMSs; and MJ1143 (361 aas; spQ58543) exhibits 5-6 TMSs. This topological variability is an unusual characteristic of a family of homologous transport proteins, and its functional significance cannot be evaluated at this time. It is possible that transport mechanisms will vary in accordance with topology. On the other hand, only 2 TMSs, common to all of these proteins may comprise the channel (Booth and Louis, 1999).

The E. coli and Synechocystis genomes include five recognized paralogues of the MscS family while the Bacillus subtilis and Methanococcus jannaschii genomes include three paralogues. KefA is multidomain and may be multifunctional. It has a large (470 amino acyl residues) N-terminal extracytoplasmic domain that may interact with the peptidoglycan cell wall, a central hydrophobic region including the 11 TMSs (residues 480-940), and a C-terminal cytoplasmic domain (residues 941-1120). Only the last four TMSs and the C-terminal hydrophilic domain are homologous to the much shorter YggA protein. One of the Synechocystis homologues (slr1575) possesses a C-terminal domain homologous to cyclic AMP-dependent protein kinaseA regulatory subunits (Ochoa de Alde and Houmard, 2000). It may therefore be a cyclic nucleotide-regulated channel.

A homologue of MscS channels in Erwinia chrysanthemi, BspA, is encoded within an operon that includes the psd gene encoding phosphatidyl serine decarboxylase. In high salts medium, glycine betaine initially is taken up normally in a bspA mutant, but uptake is followed by reduced glucose uptake and release of glycine betaine without loss of viability. It was suggested that BspA is not a channel but instead senses the intracellular glycine betaine and the extracellular salt concentrations, and thus serves as a receptor for osmoadaptation (Touzé et al., 2001).

In bacterial and animal systems, mechanosensitive (MS) ion channels are thought to mediate the perception of pressure, touch, and sound. Ten MscS-Like (MSL) proteins are encoded within the genome of Arabidopsis thaliana. MSL2 and MSL3, along with MSC1, a MscS family member from green algae, are implicated in the control of organelle morphology. Haswell et al. (2008) characterized MSL9 and MSL10, two MSL proteins found in the plasma membrane of root cells. MSL9 and MSL10, along with three other members of the MSL family, are required for MS channel activities detected in protoplasts derived from root cells.

The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. Wang et al. (2008) described a 3.45 angstrom-resolution structure in an open conformation. MscS has a pore diameter of ~13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation (Wang et al., 2008). The levels of both MscL and MscS channels in Bacillus subtilis are high during exponential phase growth, very low in stationary phase and non-detectable in spores (Wahome et al., 2009). 

The E. coli MscS (EcMscS) has been extensively studied, but it may display characteristics not widely conserved in this protein family. With numerous members now electrophysiologically characterized, these channels displays a breadth of ion selectivity with both anion and cation selective members. The selectivities of these channels may be relatively weak in comparison to voltage-gated channels. Residues important for selectivity in MscS homologs suggest different selectivity mechanisms than those employed by voltage gated K+, Na+, Ca2+ and Cl- channels whose selectivity filters are housed within their transmembrane pores. Cox et al. 2013 attempted to unravel the potential physiological relevance of these differences.

The generalized transport reaction proposed for MscS channels is:

osmolytes (in) and Wahome et al., 2009). 

The E. coli MscS (EcMscS) has been extensively studied, but it may display characteristics not widely conserved in this protein family. With numerous members now electrophysiologically characterized, these channels displays a breadth of ion selectivity with both anion and cation selective members. The selectivities of these channels may be relatively weak in comparison to voltage-gated channels. Residues important for selectivity in MscS homologs suggest different selectivity mechanisms than those employed by voltage gated K+, Na+, Ca2+ and Cl- channels whose selectivity filters are housed within their transmembrane pores. Cox et al. 2013 attempted to unravel the potential physiological relevance of these differences.

The generalized transport reaction proposed for MscS channels is:

osmolytes (in) and ions (in) osmolytes (out) and ions (out).

References associated with 1.A.23 family:

Bass, R.B., P. Strop, M. Barclay, and D.C. Rees. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298: 1582-1587. 12446901
Becker, M., K. Börngen, T. Nomura, A.R. Battle, K. Marin, B. Martinac, and R. Krämer. (2013). Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim. Biophys. Acta. 1828: 1230-1240. 23313454
Biggin, P.C. and M.S. Sansom. (2003). Mechanosensitive channels: stress relief. Curr. Biol. 13: R183-185. 12620208
Booth, I.R. and P. Louis (1999). Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol. 2: 166-169. 10322175
Caldwell, D.B., H.R. Malcolm, D.E. Elmore, and J.A. Maurer. (2010). Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. Biochim. Biophys. Acta. 1798: 1750-1756. 20529663
Cox, C.D., K.T. Wann, and B. Martinac. (2013). Selectivity mechanisms in MscS-like channels: From structure to function. Channels (Austin) 8:. [Epub: Ahead of Print] 24262975
Haswell, E.S. and E.M. Meyerowitz. (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16: 1-11. 16401419
Haswell, E.S., R. Peyronnet, H. Barbier-Brygoo, E.M. Meyerowitz, and J.M. Frachisse. (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18: 730-734. 18485707
Jensen, G.S. and E.S. Haswell. (2012). Functional Analysis of Conserved Motifs in the Mechanosensitive Channel Homolog MscS-Like2 from Arabidopsis thaliana. PLoS One 7: e40336. 22768278
Kloda, A. and B. Martinac. (2001a). Molecular identification of a mechanosensitive channel in archaea. Biophys. J. 80: 229–240. 11159397
Kloda, A. and B. Martinac. (2001b). Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20: 1888–1896. 11296222
Koprowski, P. and A. Kubalski. (2003). C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278: 11237-11245. 12551944
Koprowski, P., W. Grajkowski, E.Y. Isacoff, and A. Kubalski. (2011). Genetic screen for potassium leaky small mechanosensitive channels (MscS) in Escherichia coli: recognition of cytoplasmic β domain as a new gating element. J. Biol. Chem. 286: 877-888. 20978126
Kung, C., B. Martinac, and S. Sukharev. (2010). Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64: 313-329. 20825352
Lai, J.Y., Y.S. Poon, J.T. Kaiser, and D.C. Rees. (2013). Open and shut: Crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from E. coli and H. pylori at 4.4 Å and 4.1 Å resolution. Protein. Sci. [Epub: Ahead of Print] 23339071
Le Dain, A.C., N. Saint, A. Kloda, A. Ghazi and B. Martinac (1998). Mechanosensitive ion channels of the archeon Haloferax volcanii. J. Biol. Chem. 273: 12116-12119. 9575156
Levina, N., S. Tötemeyer, N.R. Stokes, P. Louis, M.A. Jones and I.R. Booth (1999). Protection of E. coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18: 1730-1737. 10202137
Malcolm, H.R., Y.Y. Heo, D.E. Elmore, and J.A. Maurer. (2011). Defining the role of the tension sensor in the mechanosensitive channel of small conductance. Biophys. J. 101: 345-352. 21767486
Martinac, B., J. Adler and C. Kung (1990). Mechanosensitive channels of E. coli activated by amphipaths. Nature 348: 261-263. 1700306
Martinac, B., M. Buechner, A.H. Delcour, J. Adler and C. Kung (1987). Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2297-2301. 2436228
Miller, S., M.D. Edwards, C. Ozdemir, and I.R. Booth. (2003b). The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J. Biol. Chem. 278: 32246-32250. 12767977
Miller, S., W. Bartlett, S. Chandrasekaran, S. Simpson, M. Edwards, and I.R. Booth. (2003a). Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22: 36-46. 12505982
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Nakayama, Y., K. Fujiu, M. Sokabe, and K. Yoshimura. (2007). Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc. Natl. Acad. Sci. USA 104: 5883-5888. 17389370
Ochoa de Alda, J. and J. Houmard (2000). Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. Microbiology 146: 3183-3194. 11101676
Perozo, E. and D.C. Rees. (2003). Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13: 432-442. 12948773
Pivetti, C.D., M.-R. Yen, S. Miller, W. Busch, Y.-H. Tseng, I.R. Booth, and M.H. Saier, Jr. (2003). Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67: 66-85. 12626684
Pliotas, C., R. Ward, E. Branigan, A. Rasmussen, G. Hagelueken, H. Huang, S.S. Black, I.R. Booth, O. Schiemann, and J.H. Naismith. (2012). Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. Proc. Natl. Acad. Sci. USA 109: E2675-2682. 23012406
Schumann, U., M.D. Edwards, T. Rasmussen, W. Bartlett, P. van West, and I.R. Booth. (2010). YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. Proc. Natl. Acad. Sci. USA 107: 12664-12669. 20616037
Sukharev, S.I., P. Blount, B. Martinac, H.R. Guy and C. King (1996). MscL: a mechanosensitive channel in Escherichia coli. In: Organellar Ion Channels and Transporters (D. E. Clapham and B. E. Ehrlich, eds.). Rockefeller University Press, New York, pp. 133-141. 8809939
Touzé, T., G. Gouesbet, C. Boiangiu, M. Jebbar, S. Bonnassie, and C. Blanco. (2001). Glycine betaine loses its osmoprotective activity in a bspAstrain of Erwinia chrysanthemi. Mol. Microbiol. 42: 87-99. 11679069
Wahome, P.G., A.E. Cowan, B. Setlow, and P. Setlow. (2009). Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Arch. Microbiol. 191: 403-414. 19252899
Wang, W., S. Black, M.D. Edwards, S. Miller, E.L. Morrision, W. Bartlett, C. Dong, J.H. Naismith, and I.R. Booth. (2008).  The structure of an open form of an E. coli mechanosensitive channel at 3.45 A Resoluton.  Science 321: 1179-1214.