TCDB is operated by the Saier Lab Bioinformatics Group

1.A.24 The Gap Junction-forming Connexin (Connexin) Family

Gap junctions, found in the plasma membranes of vertebrate animal cells, consist of clusters of closely packed pairs of transmembrane channels, the connexons, through which small molecules diffuse between neighboring cells (Zhou and Jiang 2014). The connexons consist of homo- or heterohexameric arrays of connexins, and the connexon in one plasma membrane docks end-to-end with a connexon in the membrane of a closely opposed cell. The hemichannel is made of six connexin subunits (Kar et al., 2012). Over 15 connexin subunit isoforms are known. They vary in size between about 25 kDa and 60 kDa. They have four putative transmembrane α-helical spanners, and direct experimental evidence favors the α-helical folding of at least two of these TMSs. Connexins are similar in sequence and are designated connexins α1-8 and β1-6. Low resolution structural data are available for a gap junction membrane channel. A dodecameric channel is formed by the end-to-end docking of two hexamers, each displaying 24 TMSs (4 α-helical TMSs per connexin subunit) (Bosco et al., 2011). Gap junctional channels are parts of multiprotein complexes (Hervé et al., 2011).  Regulation of cardiovascular connexins have been reviewed (Meens et al. 2013).

Connexin channels have been reconstituted in unilamellar phospholipid vesicles from purified rat liver connexin 43. The vesicles were shown to be permeable to sucrose and the dye, lucifer yellow, and channel activity was reversibly inhibited by phosphorylation of connexin 43 by mitogen-activated protein (MAP) kinase. Other kinases may also effect inhibition. Gating of connexin 43 channels may therefore be regulated by phosphorylation of the connexin subunit in vivo. However, the cytoplasmic tails differ considerably in the size and amino acid sequence for different connexins and are predicted to be involved in the channel open and closed conformations. A ball and chain model for hemichannel conformational changes has been proposed for some connexins (e.g., Cx43) with large cytoplasmic tails (Liu et al., 2006). The tail folds into a ball or 'gating particle' and binds to the cytoplasmic loop domain, leading to channel closure (Liu et al., 2006).

Different connexins may exhibit differing specificities for solutes. For example, adenosine passed about 12-fold better through channels formed by Cx32 while AMP and ADP passed about 8-fold better, and ATP greater than 300-fold better, through channels formed by Cx43. Thus, addition of phosphate to adenosine appears to shift its relative permeability from channels formed by Cx32 to channels formed by Cx43. This may have functional consequence because the energy status of a cell could be controlled via connexin expression and channel formation (Goldberg et al., 2002).

There are about 20 isoforms of connexin proteins, each forming channels with distinct channel properties (Ayad et al., 2006). Moreover, connexins can form both homomeric and heteromeric connexin channels. The two homomeric channels may have different permeability properties than those from the heteromeric channels including both proteins (see 1.A.24.1.3; Ayad et al., 2006). Connexin23 has only 4 conserved cysteines in the extracellular domain, but they still form hemichannels (Iovine et al., 2008).

Deletion or mutation of the various connexin isoforms produces distinctive phenotypes and pathologies. This observation reflects (1) the different molecular specificities, (2) the different relative magnitudes of transport rates of various compounds via these channels, and (3) the regulatory properties via these dissimilar channels.  Genetic diseases indicate that the normal function of CNS myelin depends on connexin32 (Cx32) and Cx47, gap junction (GJ) proteins expressed by oligodendrocytes. GJs couple oligodendrocytes to themselves (O/O channels), astrocytes to themselves (A/A channels), and oligodendrocytes to astrocytes (O/A channels). Astrocytes and oligodendrocytes express different connexins. Cx47/Cx43 and Cx32/Cx30 efficiently form functional channels, but neither Cx47 nor Cx43 formed channels with Cx30 or Cx32 (Orthoann-Murphy et al., 2007). Cx47/Cx43 and Cx32/Cx30 channels have distinct properties and permeabilities. Cx47 mutants that cause Pelizaeus-Merzbacher-like disease do not efficiently form functional channels with Cx43, indicating that disrupted Cx47/Cx43 channels cause this disease.  The mutations in connexins that give rise to disease have been summarized and discussed (Pfenniger et al. 2011).

Maeda et al. (2009) have reported the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 Å resolution. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a postively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage (Nakagawa et al., 2010). The N-terminal half of connexin 46 appears to contain the core elements of the pore and voltage gates (Kronengold et al., 2012).

The transport reaction catalyzed by connexin gap junctions is:

Small molecules (cell 1 cytoplasm) Small molecules (cell 2 cytoplasm)

 

This family belongs to the: Gap Junction (GJ) Superfamily.

References associated with 1.A.24 family:

Ayad, W.A., D. Locke, I.V. Koreen, and A.L. Harris. (2006). Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J. Biol. Chem. 281: 16727-16739. 16601118
Banerjee, D., S. Das, S.A. Molina, D. Madgwick, M.R. Katz, S. Jena, L.K. Bossmann, D. Pal, and D.J. Takemoto. (2011). Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J. Biol. Chem. 286: 24519-24533. 21606502
Bevans, C.G., M. Kordel, S.K. Rhee, and A.L. Harris. (1998). Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273: 2808-2816. 9446589
Beyer, E.C., D.L. Paul, and D.A. Goodenough. (1987). Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105: 2621-2629. 2826492
Bosco, D., J.A. Haefliger, and P. Meda. (2011). Connexins: key mediators of endocrine function. Physiol. Rev. 91: 1393-1445. 22013215
Derosa, A.M., C.H. Xia, X. Gong, and T.W. White. (2007). The cataract-inducing S50P mutation in Cx50 dominantly alters the channel gating of wild-type lens connexins. J. Cell. Sci. 120:4107-4116. 18003700
Gabriel, L.A., R. Sachdeva, A. Marcotty, E.J. Rockwood, and E.I. Traboulsi. (2011). Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. Arch Ophthalmol 129: 781-784. 21670345
Goldberg, G.S., A.P. Moreno, and P.D. Lampe. (2002). Gap junctions between cells expressing connexon 43 or 32 show inverse permselectivity to adenosine and ATP. J. Biol. Chem. 277: 36725-36730. 12119284
Hervé, J.C., M. Derangeon, D. Sarrouilhe, B.N. Giepmans, and N. Bourmeyster. (2011). Gap junctional channels are parts of multiprotein complexes. Biochim. Biophys. Acta. [Epub: Ahead of Print] 22197781
Hervé, J.C., P. Phelan, R. Bruzzone, and T.W. White. (2005). Connexins, innexins and pannexins: bridging the communication gap. Biochim. Biophys. Acta. 1719: 3-5. 16359939
Hua, V.B., A.B. Chang, J.H. Tchieu, P.A. Nielsen, and M.H. Saier, Jr. (2003). Sequence and phylogenetic analysis of 4 TMS junctional proteins: Connexins, innexins, claudins and occludins. J. Mem. Biol. 194: 59-76. 14502443
Iossa, S., E. Marciano, and A. Franzé. (2011). GJB2 Gene Mutations in Syndromic Skin Diseases with Sensorineural Hearing Loss. Curr Genomics 12: 475-785. 22547955
Iovine, M.K., A.M. Gumpert, M.M. Falk, and T.C. Mendelson. (2008). Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett. 582: 165-170. 18068130
Jara, O., R. Acuña, I.E. García, J. Maripillán, V. Figueroa, J.C. Sáez, R. Araya-Secchi, C.F. Lagos, T. Pérez-Acle, V.M. Berthoud, E.C. Beyer, and A.D. Martínez. (2012). Critical role of the first transmembrane domain of Cx26 in regulating oligomerization and function. Mol. Biol. Cell. [Epub: Ahead of Print] 22787277
Kang, J., N. Kang, D. Lovatt, A. Torres, Z. Zhao, J. Lin, and M. Nedergaard. (2008). Connexin 43 hemichannels are permeable to ATP. J. Neurosci. 28: 4702-4711. 18448647
Kar, R., N. Batra, M.A. Riquelme, and J.X. Jiang. (2012). Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys. [Epub: Ahead of Print] 22430362
Kim, D.Y., Y. Kam, S.K. Koo, and C.O. Joe. (1998). Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J. Biol. Chem. 274: 5581-5587. 10026174
Kronengold, J., M. Srinivas, and V.K. Verselis. (2012). The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J. Membr. Biol. 245: 453-463. 22825713
Kyle JW., Berthoud VM., Kurutz J., Minogue PJ., Greenspan M., Hanck DA. and Beyer EC. (2009). The N terminus of connexin37 contains an alpha-helix that is required for channel function. J Biol Chem. 284(30):20418-27. 19478091
Leithe, E. and E. Rivedal. (2007). Ubiquitination of gap junction proteins. J. Membr. Biol. 217: 43-51. 17657522
Liang, W.G., C.C. Su, J.H. Nian, A.S. Chiang, S.Y. Li, and J.J. Yang. (2011). Human connexin30.2/31.3 (GJC3) does not form functional gap junction channels but causes enhanced ATP release in HeLa cells. Cell Biochem Biophys 61: 189-197. 21480002
Liu, F., F.T. Arce, S. Ramachandran, and R. Lal. (2006). Nanmechanics of hemichannel conformations. Connexin flexibility underlying channel opening and closing. J. Biol. Chem. 281: 23207-23217. 16769719
Maeda, S., S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, and T. Tsukihara. (2009). Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458: 597-602. 19340074
Meens, M.J., A. Pfenniger, B.R. Kwak, and M. Delmar. (2013). Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res. [Epub: Ahead of Print] 23612582
Nakagawa, S., S. Maeda, and T. Tsukihara. (2010). Structural and functional studies of gap junction channels. Curr. Opin. Struct. Biol. 20: 423-430. 20542681
Orthmann-Murphy, J.L., M. Freidin, E. Fischer, S.S. Scherer, and C.K. Abrams. (2007). Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J. Neurosci. 27: 13949-13957. 18094232
Pfenniger, A., A. Wohlwend, and B.R. Kwak. (2011). Mutations in connexin genes and disease. Eur J Clin Invest 41: 103-116. 20840374
Stridh, M.H., M. Tranberg, S.G. Weber, F. Blomstrand, and M. Sandberg. (2008). Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J. Biol. Chem. 283(16): 10347-10356. 18272524
Su, C.C., S.Y. Li, Y.C. Yen, J.H. Nian, W.G. Liang, and J.J. Yang. (2013). Mechanism of two novel human GJC3 missense mutations in causing non-syndromic hearing loss. Cell Biochem Biophys 66: 277-286. 23179405
Teubner B., B. Odermatt, M. Guldenagel, G. Sohl, J. Degen, F. Bukauskas, J. Kronengold, V.K. Verselis, Y.T. Jung, C.A. Kozak, K. Schilling, K. Willecke. (2001). Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J. Neurosci. 21: 1117-1126. 11160382
Unger, V.M., N.M. Kumar, N.B. Gilula, and M. Yeager. (1999). Three-dimensional structure of a recombinant gap junction membrane channel. Science 283: 1176-1180. 10024245
Valiunas V., R. Mui, E. McLachlan, G. Valdimarsson, P.R. Brink, T.W. White. (2004). Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol. Cell Physiol. 287: C1596-1604 15282192
Wang, K.J. and S.Q. Zhu. (2012). A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol Vis 18: 968-973. 22550389
White, T.W. and D.L. Paul. (1999). Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61: 283-310. 10099690
White, T.W., H. Wang, R. Mui, J. Litteral, and P.R. Brink. (2004). Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett. 577: 42-48. 15527759
Yeager, M. and N.B. Gilula. (1992). Membrane topology and quaternary structure of cardiac gap junction ion channels. J. Mol. Biol. 223: 929-948. 1371548
Yeager, M., V.M. Unger, and M.M. Falk. (1998). Synthesis, assembly and structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 8: 517-524. 9729745
Zhou, J.Z. and J.X. Jiang. (2014). Gap Junction and Hemichannel-Independent Actions of Connexins on Cell and Tissue Functions - an Update. FEBS Lett. [Epub: Ahead of Print] 24434539