TCDB is operated by the Saier Lab Bioinformatics Group

1.A.5 The Polycystin Cation Channel (PCC) Family

Human polycystin 1 is a huge protein of 4303 aas. Its repeated leucine-rich (LRR) segment is found in many proteins. According to the SwissProt description, polycystin 1 contains 16 polycystic kidney disease (PKD) domains, one LDL-receptor class A domain, one C-type lectin family domain, and 16-18 putative TMSs in positions between residues 2200 and 4100. However, atomic force microscopy imaging has revealed the domain structure of polycystin-1 (Oatley et al., 2012). It exhibits minimal sequence similarities, but similar domain organization and membrane topology with established cation channels such as the transient receptor potential (TRP) and voltage-gated ion channel (VIC) family proteins (TC#s 1.A.1 and 1.A.4, respectively). However, PSI-BLAST without iterations does not pick up these similarities. The PKD2L1-PKD1L3 complex perceives sour taste. Disruption of the PKD2-PKD1 complex, responsible for mechanosensation, leads to development of ADPKD (autosomal-dominant polycystic kidney disease) (Dalagiorgou et al. 2010). Besides modulating channel activity and related signalling events, the CRDs (C-terminal regulatory domains) of PKD2 and PKD2L1 play a central role in channel oligomerization. These proteins appear to form trimers (Molland et al. 2010).

Polycystin-L has been shown to be a cation (Na+, K+ and Ca2+) channel that is activated by Ca2+, while polycystin-2 has been characterized as a Ca2+-permeable cation-selective channel. Two members of the PCC family (polycystin 1 and 2; PKD1 and 2) are mutated in human autosomal dominant polycystic kidney disease, and polycystin-L, very similar and probably orthologous to PKD2, is deleted in mice with renal and retinal defects. PKD1 and 2 interact to form the non-selective cation channel in vitro, but PKD2 can form channels in the absence of any other associated protein. Polycystin-2 transports a variety of organic cations (dimethylamine, tetraethylammonium, tetrabutylammonium, tetrapropylammonium, tetrapentenyl ammonium). The channel diameter was estimated to be at least 1.1 Å (Anyatonwu and Ehrlich, 2005). Both are reported to be integral membrane proteins with 7-11 TMSs (PKD1) and 6 TMSs (PKD2), respectively. They share a homologous region of about 400 residues (residues 206-623 in PKD2; residues 3656-4052 in PKD1) which includes five TMSs of both proteins. This may well be the channel domain. PKD2 and polycystin-L have been shown to exhibit voltage-, pH- and divalent cation-dependent channel activity (Gonzalez-Perrett et al., 2002; Liu et al., 2002). PKD1 may function primarily in regulation, both activating and stabilizing the polycystin-2 channel (Xu et al., 2003).

Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC) (Q8TCZ9, 4074aaa). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2; TRPP2).  Kim et al.  (2008) have concluded that a functional and molecular interaction exists between FPC and PC2 in vivo. Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex (Arif Pavel et al. 2016).

Humans have five PKD1 proteins, whereas sea urchins have 10. The PKD1 proteins of the sea urchin, Strongylocentrotus purpuratus, are referred to as the Receptor for Egg Jelly, or SpREJ proteins. SpREJ proteins form a subfamily within the PKD1 family. They frequently contain C-type lectin domains, PKD repeats, a REJ domain, a GPS domain, a PLAT/LH2 domain, 1-11 transmembrane segments and a C-terminal coiled-coil domain. SpREJs show distinct patterns of expression during embryogenesis, and adult tissues show tissue-specific patterns of SpREJ expression (Gunaratne et al. 2007).

The TRP-ML1 protein (Mucolipin-1) has been shown to be a lysosomal monovalent cation channel that undergoes inactivating proteolytic cleavage (Kiselyov et al., 2005). It shows greater sequence similarity to the transmembrane region of polycystin 2 than it does to members of the TRP-CC family (1.A.4). Therefore, it is included in the former family. Both the PCC and TRP-CC families are members of the VIC superfamily.

Transient receptor potential (TRP) polycystin 2 and 3 (TRPP2 and 3) are homologous members of the TRP superfamily of cation channels but have different physiological functions. TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right asymmetry development. TRPP3 is implicated in sour tasting in bipolar cells of taste buds of the tongue and in the regulation of pH-sensitive action potential in neurons surrounding the central canal of the spinal cord. TRPP3 is present in both excitable and non-excitable cells in various tissues, such as retina, brain, heart, testis, and kidney.

Alpha-actinin is an actin-bundling protein known to regulate several types of ion channels. Planer lipid bilayer electrophysiology showed that TRPP3 exhibits cation channel activities that are substantially augmented by alpha-actinin. The TRPP3-alpha-actinin association was documented by co-immunoprecipitation using native cells and tissues, yeast two-hybrid, and in vitro binding assays (Li et al., 2007). TRPP3 is abundant in mouse brain where it associates with alpha-actinin-2. Alpha-actinin attaches TRPP3 to the cytoskeleton and up-regulates its channel function.

PCC proteins catalyze:

Cations (in) Cations (out)

This family belongs to the: VIC Superfamily.

References associated with 1.A.5 family:

Anyatonwu, G.I. and B.E. Ehrlich. (2005). Organic cation permeation through the channel formed by polycystin-2. J. Biol. Chem. 280: 29488-29493. 15961385
Arif Pavel, M., C. Lv, C. Ng, L. Yang, P. Kashyap, C. Lam, V. Valentino, H.Y. Fung, T. Campbell, S.G. Møller, D. Zenisek, N.G. Holtzman, and Y. Yu. (2016). Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl. Acad. Sci. USA 113: E2363-2372. 27071085
Bai, C.X., S. Kim, W.P. Li, A.J. Streets, A.C. Ong, and L. Tsiokas. (2008). Activation of TRPP2 through mDia1-dependent voltage gating. EMBO. J. 27: 1345-1356. 18388856
Bycroft, M., A. Bateman, J. Clarke, S.J. Hamill, R. Sandford, R.L. Thomas, and C. Chothia. (1999). The structure of a PKD domain from polycystin-1. Implications for polycystic kidney disease. EMBO J. 18: 297-305. 9889186
Chen, X.-Z., P.M. Vassilev, N. Basora, J.-B. Peng, H. Nomura, Y. Segal, E.M. Brown, S.T. Reeders, M.A. Hediger, and J. Zhou. (1999). Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401: 383-386. 10517637
Cuajungco MP., Basilio LC., Silva J., Hart T., Tringali J., Chen CC., Biel M. and Grimm C. (2014). Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic. 15(11):1247-65. 25130899
Cuajungco, M.P. and K. Kiselyov. (2017). The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22: 1330-1343. 28199205
Cuajungco, M.P. and M.A. Samie. (2008). The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457: 463-473. 18504603
Cuajungco, M.P., J. Silva, A. Habibi, and J.A. Valadez. (2015). The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch. [Epub: Ahead of Print] 26336837
Dalagiorgou, G., E.K. Basdra, and A.G. Papavassiliou. (2010). Polycystin-1: function as a mechanosensor. Int J Biochem. Cell Biol. 42: 1610-1613. 20601082
Deltas, C.C. (2001). Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum. Mutat. 18: 13-24. 11438989
Dong, X.P., X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz, and H. Xu. (2008). The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455: 992-996. 18794901
García-Añoveros, J. and T. Wiwatpanit. (2014). TRPML2 and Mucolipin Evolution. Handb Exp Pharmacol 222: 647-658. 24756724
González-Perrett, S., K. Kim, C. Ibarra, A.E. Damiano, E. Zotta, M. Batelli, P.C. Harris, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2001). Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl. Acad. Sci. USA 98: 1182-1187. 11252306
Gonzalez-Perrett, S., M. Batelli, K. Kim, M. Essafi, G. Timpanaro, N. Moltabetti, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2002). Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J. Biol. Chem. 277: 24959-24966. 11991947
Gunaratne, H.J., G.W. Moy, M. Kinukawa, S. Miyata, S.A. Mah, and V.D. Vacquier. (2007). The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics 8: 235. 17629917
Hoffmeister, H., A.R. Gallagher, A. Rascle, and R. Witzgall. (2010). The human polycystin-2 protein represents an integral membrane protein with six membrane-spanning domains and intracellular N- and C-termini. Biochem. J. 433: 285-294. 21044049
Hogan, M.C., J.L. Bakeberg, V.G. Gainullin, M.V. Irazabal, A.J. Harmon, J.C. Lieske, M.C. Charlesworth, K.L. Johnson, B.J. Madden, R.M. Zenka, D.J. McCormick, J.L. Sundsbak, C.M. Heyer, V.E. Torres, P.C. Harris, and C.J. Ward. (2015). Identification of Biomarkers for PKD1 Using Urinary Exosomes. J Am Soc Nephrol 26: 1661-1670. 25475747
Hu, M., Y. Liu, J. Wu, and X. Liu. (2015). Influx-Operated Ca2+ Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 13: 798-811. 26489466
Huang, K., D.R. Diener, A. Mitchell, G.J. Pazour, G.B. Witman, and J.L. Rosenbaum. (2007). Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179: 501-514. 17984324
Hussein, S., W. Zheng, C. Dyte, Q. Wang, J. Yang, F. Zhang, J. Tang, Y. Cao, and X.Z. Chen. (2015). Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.). Sci Rep 5: 15752. 26502994
Ishimaru, Y., H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 103: 12569-12574. 16891422
Ishimaru, Y., Y. Katano, K. Yamamoto, M. Akiba, T. Misaka, R.W. Roberts, T. Asakura, H. Matsunami, and K. Abe. (2010). Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J. 24: 4058-4067. 20538909
Kim H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, S. Muallem. (2007). Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem. 282: 36138-36142. 17962195
Kim HJ., Yamaguchi S., Li Q., So I. and Muallem S. (2010). Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem. 285(22):16513-20. 20378547
Kim, I., Y. Fu, K. Hui, G. Moeckel, W. Mai, C. Li, D. Liang, P. Zhao, J. Ma, X.Z. Chen, A.L. George, R.J. Coffey, Z.P. Feng, and G. Wu (2008). Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19: 455-68. 18235088
Kiselyov, K., J. Chen, Y. Rbaibi, D. Oberdick, S. Tjon-Kon-Sang, N. Shcheynikov, S. Muallem, and A. Soyombo. (2005). TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem. 280: 43218-43223. 16257972
Lev, S., D.A. Zeevi, A. Frumkin, V. Offen-Glasner, G. Bach, and B. Minke. (2010). Constitutive activity of the human TRPML2 channel induces cell degeneration. J. Biol. Chem. 285: 2771-2782. 19940139
Li, Q., X.Q. Dai, P.Y. Shen, Y. Wu, W. Long, C.X. Chen, Z. Hussain, S. Wang, and X.Z. Chen. (2007). Direct binding of α-actinin enhances TRPP3 channel activity. J Neurochem 103(6): 2391-2400. 17944866
Li, Y., N.G. Santoso, S. Yu, O.M. Woodward, F. Qian, and W.B. Guggino. (2009). Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284: 36431-36441. 19854836
Liu, Y., Q. Li, M. Tan, Y.-Y. Zhang, E. Karpinski, J. Zhou, and X.-Z. Chen. (2002). Modulation of the human polycystin-L channel by voltage and divalent cations. FEBS Lett. 525: 71-76. 12163164
Luzio, J.P., N.A. Bright, and P.R. Pryor. (2007). The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans. 35: 1088-1091. 17956286
Molland, K.L., A. Narayanan, J.W. Burgner, and D.A. Yernool. (2010). Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem. J. 429: 171-183. 20408813
Nims, N.M., D. Vassmer, and R.L. Maser. (2011). Effect of PKD1 gene missense mutations on polycystin-1 membrane topogenesis. Biochemistry 50: 349-355. 21142036
Noben-Trauth, K. (2011). The TRPML3 channel: from gene to function. Adv Exp Med Biol 704: 229-237. 21290299
Oatley, P., A.P. Stewart, R. Sandford, and J.M. Edwardson. (2012). Atomic force microscopy imaging reveals the domain structure of polycystin-1. Biochemistry 51: 2879-2888. 22409330
Salehi-Najafabadi, Z., B. Li, V. Valentino, C. Ng, H. Martin, Y. Yu, Z. Wang, P. Kashyap, and Y. Yu. (2017). Extracellular Loops are Essential For the Assembly and Function of Polycystin Receptor-Ion Channel Complexes. J. Biol. Chem. [Epub: Ahead of Print] 28154010
Shen, P.S., X. Yang, P.G. DeCaen, X. Liu, D. Bulkley, D.E. Clapham, and E. Cao. (2016). The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 167: 763-773.e11. 27768895
Somlo, S. and B. Ehrlich. (2001). Human disease: calcium signaling in polycystic kidney disease. Curr. Biol. 11: R356-R360. 11369247
Wilson, P.D. (2001). Polycystin: new aspects of structure, function, and regulation. J. Am. Soc. Nephrol. 12: 834-845. 11274246
Wu, G. (2001). Current advances in molecular genetics of autosomal-dominant polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 10: 23-31. 11195048
Xu, G.M., S. González-Perrett, M. Essafi, G.A. Timpanaro, N. Montalbetti, M.A. Arnaout, and H.F. Cantiello. (2003). Polycystin-1 activates and stabilizes the polycystin-2 channel. J. Biol. Chem. 278: 1457-1462. 12407099
Yu, Y., M.H. Ulbrich, M.H. Li, Z. Buraei, X.Z. Chen, A.C. Ong, L. Tong, E.Y. Isacoff, and J. Yang. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc. Natl. Acad. Sci. USA 106: 11558-11563. 19556541
Zhu, J., Y. Yu, M.H. Ulbrich, M.H. Li, E.Y. Isacoff, B. Honig, and J. Yang. (2011). Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc. Natl. Acad. Sci. USA 108: 10133-10138. 21642537