TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.1.13.1
The low affinity proton-linked monocarboxylate (lactate, pyruvate, mevalonate, branched chain oxo acids, β-hydroxybutyrate, γ-hydroxybutyrate, butyrate, acetoacetate, acetate and formate, succinate) uptake/efflux porter (Moschen et al. 2012; Reddy et al. 2020). pH-gated succinate secretion regulates muscle remodeling in response to exercise (Reddy et al. 2020). The structural basis of MCT1 inhibition by anti-cancer drugs has been considered (Wang et al. 2020).    

Accession Number:P53985
Protein Name:MOT1 aka Mct-1 aka SLC16A1 aka MCT1
Length:500
Molecular Weight:53958.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate Monocarboxylates

Cross database links:

Genevestigator: P53985 P53985
eggNOG: prNOG08079 NOG314865
HEGENOM: HBG444740 HOG000280688
RefSeq: NP_001159968.1    NP_003042.3   
Entrez Gene ID: 6566   
Pfam: PF07690   
Drugbank: Drugbank Link   
OMIM: 156575  phenotype
245340  phenotype
600682  gene
610021  phenotype
KEGG: hsa:6566    hsa:6566   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005624 C:membrane fraction
GO:0005886 C:plasma membrane
GO:0015130 F:mevalonate transmembrane transporter activity
GO:0005515 F:protein binding
GO:0015355 F:secondary active monocarboxylate transmembr...
GO:0015293 F:symporter activity
GO:0015728 P:mevalonate transport
GO:0015711 P:organic anion transport
GO:0055085 P:transmembrane transport
GO:0005739 C:mitochondrion
GO:0015355 F:secondary active monocarboxylate transmembrane transporter activity
GO:0007596 P:blood coagulation
GO:0050900 P:leukocyte migration
GO:0006090 P:pyruvate metabolic process

References (25)

[1] “cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12.”  Garcia C.K.et.al.   7835905
[2] “The full-ORF clone resource of the German cDNA consortium.”  Bechtel S.et.al.   17974005
[3] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[4] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[5] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.”  Wang B.et.al.   19007248
[6] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.”  Daub H.et.al.   18691976
[7] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[8] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[9] “Large-scale proteomics analysis of the human kinome.”  Oppermann F.S.et.al.   19369195
[10] “Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport.”  Merezhinskaya N.et.al.   10590411
[11] “Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells.”  Otonkoski T.et.al.   17701893
[12] “cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12.”  Garcia C.K.et.al.   7835905
[13] “The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis.”  Cuff M.A.et.al.   11944921
[14] “The full-ORF clone resource of the German cDNA consortium.”  Bechtel S.et.al.   17974005
[15] “The DNA sequence and biological annotation of human chromosome 1.”  Gregory S.G.et.al.   16710414
[16] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[17] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[18] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.”  Wang B.et.al.   19007248
[19] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.”  Daub H.et.al.   18691976
[20] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[21] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[22] “Large-scale proteomics analysis of the human kinome.”  Oppermann F.S.et.al.   19369195
[23] “Initial characterization of the human central proteome.”  Burkard T.R.et.al.   21269460
[24] “Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport.”  Merezhinskaya N.et.al.   10590411
[25] “Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells.”  Otonkoski T.et.al.   17701893

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MPPAVGGPVG YTPPDGGWGW AVVIGAFISI GFSYAFPKSI TVFFKEIEGI FHATTSEVSW 
61:	ISSIMLAVMY GGGPISSILV NKYGSRIVMI VGGCLSGCGL IAASFCNTVQ QLYVCIGVIG 
121:	GLGLAFNLNP ALTMIGKYFY KRRPLANGLA MAGSPVFLCT LAPLNQVFFG IFGWRGSFLI 
181:	LGGLLLNCCV AGALMRPIGP KPTKAGKDKS KASLEKAGKS GVKKDLHDAN TDLIGRHPKQ 
241:	EKRSVFQTIN QFLDLTLFTH RGFLLYLSGN VIMFFGLFAP LVFLSSYGKS QHYSSEKSAF 
301:	LLSILAFVDM VARPSMGLVA NTKPIRPRIQ YFFAASVVAN GVCHMLAPLS TTYVGFCVYA 
361:	GFFGFAFGWL SSVLFETLMD LVGPQRFSSA VGLVTIVECC PVLLGPPLLG RLNDMYGDYK 
421:	YTYWACGVVL IISGIYLFIG MGINYRLLAK EQKANEQKKE SKEEETSIDV AGKPNEVTKA 
481:	AESPDQKDTE GGPKEEESPV