TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.16.3.1
The sulfite efflux (sulfite sensitivity) protein, SSU1. Expression is controlled by the FZF1-4 transcriptional activator; only free sulfite (not complexed sulfite) is exported (Park and Bakalinsky, 2000). Can also export nitrite and nitrate (Cabrera et al. 2014).  SSU1 has a putative 10 TMS topology in a (S-L)5 arrangement where S= a small putative TMS and L= a large TMS. 

Accession Number:P41930
Protein Name:Sulfite sensitivity protein SSU1
Length:458
Molecular Weight:52545.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate Sulfite

Cross database links:

Genevestigator: P41930
eggNOG: fuNOG10794
DIP: DIP-5056N
RefSeq: NP_015233.1   
Entrez Gene ID: 856013   
Pfam: PF03595   
KEGG: sce:YPL092W   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0000319 F:sulfite transmembrane transporter activity
GO:0000316 P:sulfite transport
GO:0055085 P:transmembrane transport

References (10)

[1] “SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.”  Avram D.et.al.   9294463
[2] “Population structure and gene evolution in Saccharomyces cerevisiae.”  Aa E.et.al.   16879422
[3] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI.”  Bussey H.et.al.   9169875
[4] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[5] “Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains.”  Perez-Ortin J.E.et.al.   12368245
[6] “Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae.”  Xu X.et.al.   8082198
[7] “SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.”  Park H.et.al.   10870099
[8] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[9] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[10] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MVANWVLALT RQFDPFMFMM VMGVGISSNI LYSFPYPARW LRICSYIMFA IACLIFIAVQ 
61:	ALQILHLIVY IKEKSFREYF NDFFRNMKHN LFWGTYPMGL VTIINFLGAL SKANTTKSPT 
121:	NARNLMIFVY VLWWYDLAVC LVIAWGISFL IWHDYYPLEG IGNYPSYNIK MASENMKSVL 
181:	LLDIIPLVVV ASSCGTFTMS EIFFHAFNRN IQLITLVICA LTWLHAIIFV FILIAIYFWS 
241:	LYINKIPPMT QVFTLFLLLG PMGQGSFGVL LLTDNIKKYA GKYYPTDNIT REQEILTIAV 
301:	PWCFKILGMV SAMALLAMGY FFTVISVVSI LSYYNKKEIE NETGKVKRVY TFHKGFWGMT 
361:	FPMGTMSLGN EELYVQYNQY VPLYAFRVLG TIYGGVCVCW SILCLLCTLH EYSKKMLHAA 
421:	RKSSLFSESG TEKTTVSPYN SIESVEESNS ALDFTRLA