TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.18.6.5
Na+-dependent system A-like transporter, System A2 or ATA2 (transports neutral amino acids with decreasing affinity in the order: MeAIB, Ala, Gly, Ser, Pro, Met, Asn, Gln, Thr, Leu and Phe). The neuronal system A2 has been reported to transport Asn and Gln with higher affinity than for other neutral amino acids. [ATA2 is stored in the Golgi network and released by insulin stimulus in adipocytes (Hatanaka et al., 2006a).] Its levels are regulated by ubiquitin ligase, Nedd4-2, which causes endocytotic sequestration and proteosomal degradation (Hatanaka et al., 2006b). SNAT2 also functions as a mammalian amino acid transceptor (transporter/receptor), acting in an autoregulatory gene expression pathway (Hyde et al., 2007). It also mediates an anion leak conductance that is differentially inhibited by transported substrates (Zhang and Grewer, 2007). Also transports homocysteine (Tsitsiou et al., 2009).

Accession Number:Q96QD8
Protein Name:Sodium-coupled neutral amino acid transporter 2
Length:506
Molecular Weight:56026.00
Species: [9606]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate Amino acids

Cross database links:

Genevestigator: Q96QD8 Q96QD8
eggNOG: prNOG15329 NOG236441
HEGENOM: HBG443748 HOG000013088
RefSeq: NP_061849.2   
Entrez Gene ID: 54407   
Pfam: PF01490   
OMIM: 605180  gene
KEGG: hsa:54407    hsa:54407   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0015171 F:amino acid transmembrane transporter activity
GO:0015293 F:symporter activity
GO:0006865 P:amino acid transport
GO:0006814 P:sodium ion transport
GO:0014047 P:glutamate secretion
GO:0006811 P:ion transport
GO:0007269 P:neurotransmitter secretion
GO:0055085 P:transmembrane transport

References (35)

[1] “Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A.”  Hatanaka T.et.al.   10930503
[2] “Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.”  Nagase T.et.al.   10718198
[3] “Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones.”  Nakajima D.et.al.   12168954
[4] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[5] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[6] “Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element.”  Palii S.S.et.al.   14623874
[7] “SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress.”  Bevilacqua E.et.al.   15922329
[8] “Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.”  Zhang Y.et.al.   15951569
[9] “Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain.”  Gonzalez-Gonzalez I.M.et.al.   15561425
[10] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[11] “Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation.”  Gaccioli F.et.al.   16621798
[12] “Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex.”  Melone M.et.al.   16616430
[13] “Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.”  Rikova K.et.al.   18083107
[14] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[15] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[16] “An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells.”  Heibeck T.H.et.al.   19534553
[17] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332
[18] “Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A.”  Hatanaka T.et.al.   10930503
[19] “Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.”  Nagase T.et.al.   10718198
[20] “Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones.”  Nakajima D.et.al.   12168954
[21] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[22] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[23] “Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element.”  Palii S.S.et.al.   14623874
[24] “SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress.”  Bevilacqua E.et.al.   15922329
[25] “Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.”  Zhang Y.et.al.   15951569
[26] “Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain.”  Gonzalez-Gonzalez I.M.et.al.   15561425
[27] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[28] “Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation.”  Gaccioli F.et.al.   16621798
[29] “Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex.”  Melone M.et.al.   16616430
[30] “Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.”  Rikova K.et.al.   18083107
[31] “Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks.”  Wolf-Yadlin A.et.al.   17389395
[32] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[33] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[34] “An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells.”  Heibeck T.H.et.al.   19534553
[35] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MKKAEMGRFS ISPDEDSSSY SSNSDFNYSY PTKQAALKSH YADVDPENQN FLLESNLGKK 
61:	KYETEFHPGT TSFGMSVFNL SNAIVGSGIL GLSYAMANTG IALFIILLTF VSIFSLYSVH 
121:	LLLKTANEGG SLLYEQLGYK AFGLVGKLAA SGSITMQNIG AMSSYLFIVK YELPLVIQAL 
181:	TNIEDKTGLW YLNGNYLVLL VSLVVILPLS LFRNLGYLGY TSGLSLLCMV FFLIVVICKK 
241:	FQVPCPVEAA LIINETINTT LTQPTALVPA LSHNVTENDS CRPHYFIFNS QTVYAVPILI 
301:	FSFVCHPAVL PIYEELKDRS RRRMMNVSKI SFFAMFLMYL LAALFGYLTF YEHVESELLH 
361:	TYSSILGTDI LLLIVRLAVL MAVTLTVPVV IFPIRSSVTH LLCASKDFSW WRHSLITVSI 
421:	LAFTNLLVIF VPTIRDIFGF IGASAASMLI FILPSAFYIK LVKKEPMKSV QKIGALFFLL 
481:	SGVLVMTGSM ALIVLDWVHN APGGGH