TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.21.3.1
Glucose or galactose:Na+ symporter, SGLT1 (galactose > glucose > fucose). Cotransports water against an osmotic gradient (Naftalin, 2008). TMS IV of the high-affinity sodium-glucose cotransporter participates in sugar binding (Liu et al., 2008).  Also participates in the uptake of resveratrol, an anti atherosclerosis polyphenol (Chen et al. 2013).  hSGLT1 is expressed as a disulfide bridged homodimer via C355; a portion of the intracellular 12-13 loop is re-entrant and readily accessible from the extracellular milieu (Sasseville et al. 2016). Possibly, the extracellular loop between TMS 12 and TMS 13 participates in the sugar transport of SGLT1 (Nagata and Hata 2006).

Accession Number:P13866
Protein Name:SL51 aka SGLT aka SLC5A1 aka SGLT1
Length:664
Molecular Weight:73498.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:14
Location1 / Topology2 / Orientation3: Membrane1 / Multi-pass membrane protein2
Substrate glucose, Galactose, Na+, Fucose, water

Cross database links:

Genevestigator: P13866 P13866
eggNOG: prNOG19473 COG4146
RefSeq: NP_000334.1   
Entrez Gene ID: 6523   
Pfam: PF00474   
OMIM: 182380  gene
606824  phenotype
KEGG: hsa:6523    hsa:6523   

Gene Ontology

GO:0005887 C:integral to plasma membrane
GO:0005412 F:glucose:sodium symporter activity
GO:0005515 F:protein binding
GO:0015758 P:glucose transport
GO:0006814 P:sodium ion transport
GO:0055085 P:transmembrane transport
GO:0016324 C:apical plasma membrane
GO:0031526 C:brush border membrane
GO:0005911 C:cell-cell junction
GO:0005975 P:carbohydrate metabolic process
GO:0050892 P:intestinal absorption
GO:0044281 P:small molecule metabolic process

References (18)

[1] “Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters.”  Hediger M.A.et.al.   2490366
[2] “Structure of the human Na+/glucose cotransporter gene SGLT1.”  Turk E.et.al.   8195156
[3] “A genome annotation-driven approach to cloning the human ORFeome.”  Collins J.E.et.al.   15461802
[4] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[5] “The DNA sequence of human chromosome 22.”  Dunham I.et.al.   10591208
[6] “Membrane topology of the human Na+/glucose cotransporter SGLT1.”  Turk E.et.al.   8567640
[7] “Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter.”  Turk E.et.al.   2008213
[8] “Missense mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects.”  Lam J.T.et.al.   10036327
[9] “A missense mutation in the Na(+)/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal trafficking but inactivation of the mutant protein.”  Kasahara M.et.al.   11406349
[10] “Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters.”  Hediger M.A.et.al.   2490366
[11] “Structure of the human Na+/glucose cotransporter gene SGLT1.”  Turk E.et.al.   8195156
[12] “A genome annotation-driven approach to cloning the human ORFeome.”  Collins J.E.et.al.   15461802
[13] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[14] “The DNA sequence of human chromosome 22.”  Dunham I.et.al.   10591208
[15] “Membrane topology of the human Na+/glucose cotransporter SGLT1.”  Turk E.et.al.   8567640
[16] “Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter.”  Turk E.et.al.   2008213
[17] “Missense mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects.”  Lam J.T.et.al.   10036327
[18] “A missense mutation in the Na(+)/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal trafficking but inactivation of the mutant protein.”  Kasahara M.et.al.   11406349

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MDSSTWSPKT TAVTRPVETH ELIRNAADIS IIVIYFVVVM AVGLWAMFST NRGTVGGFFL 
61:	AGRSMVWWPI GASLFASNIG SGHFVGLAGT GAASGIAIGG FEWNALVLVV VLGWLFVPIY 
121:	IKAGVVTMPE YLRKRFGGQR IQVYLSLLSL LLYIFTKISA DIFSGAIFIN LALGLNLYLA 
181:	IFLLLAITAL YTITGGLAAV IYTDTLQTVI MLVGSLILTG FAFHEVGGYD AFMEKYMKAI 
241:	PTIVSDGNTT FQEKCYTPRA DSFHIFRDPL TGDLPWPGFI FGMSILTLWY WCTDQVIVQR 
301:	CLSAKNMSHV KGGCILCGYL KLMPMFIMVM PGMISRILYT EKIACVVPSE CEKYCGTKVG 
361:	CTNIAYPTLV VELMPNGLRG LMLSVMLASL MSSLTSIFNS ASTLFTMDIY AKVRKRASEK 
421:	ELMIAGRLFI LVLIGISIAW VPIVQSAQSG QLFDYIQSIT SYLGPPIAAV FLLAIFWKRV 
481:	NEPGAFWGLI LGLLIGISRM ITEFAYGTGS CMEPSNCPTI ICGVHYLYFA IILFAISFIT 
541:	IVVISLLTKP IPDVHLYRLC WSLRNSKEER IDLDAEEENI QEGPKETIEI ETQVPEKKKG 
601:	IFRRAYDLFC GLEQHGAPKM TEEEEKAMKM KMTDTSEKPL WRTVLNVNGI ILVTVAVFCH 
661:	AYFA