TCDB is operated by the Saier Lab Bioinformatics Group

2.A.3 The Amino Acid-Polyamine-Organocation (APC) Superfamily

The APC superfamily of transport proteins includes members that function as solute:cation symporters and solute:solute antiporters (Saier, 2000; Wong et al. 2012; Schweikhard and Ziegler 2012). They occur in bacteria, archaea, yeast, fungi, unicellular eukaryotic protists, slime molds, plants and animals (Saier, 2000). They vary in length, being as small as 350 residues and as large as 850 residues. The smaller proteins are generally of prokaryotic origin while the larger ones are of eukaryotic origin. Most of them possess twelve transmembrane α-helical spanners but have a re-entrant loop involving TMSs 2 and 3 (Gasol et al., 2004). Members of one family within the APC superfamily (SGP; TC# 2.A.3.9) are amino acid receptors rather than transporters (Cabrera-Martinez et al., 2003), and are truncated at their C-termini, relative to the transporters, having 10 TMSs (Jack et al., 2000). The eukaryotic members of another family (CAT; TC# 2.A.3.3) and the members of a prokaryotic family (AGT; TC #2.A.3.11) have 14 TMSs (Lorca et al., 2003). The larger eukaryotic and archaeal proteins possess N- and C-terminal hydrophilic extensions. Some animal proteins, for example, those in the LAT family (TC# 2.A.3.8) including ASUR4 (gbY12716) and SPRM1 (gbL25068) associate with a type 1 transmembrane glycoprotein that is essential for insertion or activity of the permease and forms a disulfide bridge with it. These glycoproteins include the CD98 heavy chain protein of Mus musculus (gbU25708) and the orthologous 4F2 cell surface antigen heavy chain of Homo sapiens (spP08195). The latter protein is required for the activity of the cystine/glutamate antiporter (2.A.3.8.5) which maintains cellular redox balance and cysteine/glutathione levels (Sato et al., 2005). They are members of the rBAT family of mammalian proteins (TC #8.A.9). Two APC family members, LAT1 and LAT2 (TC #2.A.3.8.7), transport a neurotoxicant, the methylmercury-L-cysteine complex, by molecular mimicry (Simmons-Willis et al., 2002). Hip1 of S. cerevisiae (TC #2.A.3.1.5) has been implicated in heavy metal transport. Distant constituents of the APC superfamily are the AAAP family (TC# 2.A.18), the ArAAP family (TC# 2.A.42) and the STP family (TC# 2.A.43). Some of these proteins exhibit 11 TMSs. Eukaryotic members of this superfamily have been reviewed by Wipf et al. (2002) and Fischer et al. (1998).

In CadB of E. coli (2.A.3.2.2), amino acid residues involved in both uptake and excretion, or solely in excretion, are located in the cytoplasmic loops and the cytoplasmic side of transmembrane segments, whereas residues involved in uptake are located in the periplasmic loops and the transmembrane segments (Soksawatmaekhin et al., 2006). A hydrophilic cavity is proposed to be formed by the transmembrane segments II, III, IV, VI, VII, X, XI, and XII (Soksawatmaekhin et al., 2006). Based on 3-d structures of APC superfamily members, Rudnick (2011) has proposed the pathway for transport and suggested a 'rocking bundle' mechanism.

Shaffer et al. (2009) have presented the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 Å resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like LeuT (TC #2.A.22.4.2). The ApcT structure reveals an inward-facing, apo state and an amine moiety of Lys158 located in a position equivalent to the Na2 ion of LeuT. They proposed that Lys158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.

The structure and function of the cadaverine-lysine antiporter, CadB (2.A.3.2.2), and the putrescine-ornithine antiporter, PotE (2.A.3.2.1), in E. coli have been evaluated using model structures based on the crystal structure of AdiC (2.A.3.2.5), an agmatine-arginine antiporter. The central cavity of CadB, containing the substrate binding site is wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE is dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE are strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB are involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE is involved preferentially in putrescine uptake. The results indicated that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. Several residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine at neutral pH.

The roughly barrel-shaped AdiC subunit of approx45 Å diameter consists of 12 transmembrane helices, TMS1 and TMS6 being interrupted by short non-helical stretches in the middle of their transmembrane spans (Fang et al., 2009). Biochemical analysis of homologues places the amino and carboxy termini on the intracellular side of the membrane. TM1–TM10 surround a large cavity exposed to the extracellular solution. These ten helices comprise two inverted structural repeats. TM1–TM5 of AdiC align well with TM6–TM10 turned 'upside down' around a pseudo-two-fold axis nearly parallel to the membrane plane. Thus, TMS1 pairs with TMS6, TMS2 with TMS7, and etc.. Helices TMS11 and TMS12, non-participants in this repeat, provide most of the 2,500 Å2 homodimeric interface. AdiC mirrors the common fold observed unexpectedly in four phylogenetically unrelated families of Na+-coupled solute transporters: BCCT (2.A.15), NCS1 (2.A.39), SSS (2.A.21) and NSS (2.A.22) (Fang et al., 2009).

Transport reactions catalyzed by APC family members include:

Solute:proton symport - S (out) + nH+ (out) → S (in) + nH+ (in).

Solute:solute antiport - S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out). <Schweikhard and Ziegler 2012). They occur in bacteria, archaea, yeast, fungi, unicellular eukaryotic protists, slime molds, plants and animals (Saier, 2000). They vary in length, being as small as 350 residues and as large as 850 residues. The smaller proteins are generally of prokaryotic origin while the larger ones are of eukaryotic origin. Most of them possess twelve transmembrane α-helical spanners but have a re-entrant loop involving TMSs 2 and 3 (Gasol et al., 2004). Members of one family within the APC superfamily (SGP; TC# 2.A.3.9) are amino acid receptors rather than transporters (Cabrera-Martinez et al., 2003), and are truncated at their C-termini, relative to the transporters, having 10 TMSs (Jack et al., 2000). The eukaryotic members of another family (CAT; TC# 2.A.3.3) and the members of a prokaryotic family (AGT; TC #2.A.3.11) have 14 TMSs (Lorca et al., 2003). The larger eukaryotic and archaeal proteins possess N- and C-terminal hydrophilic extensions. Some animal proteins, for example, those in the LAT family (TC# 2.A.3.8) including ASUR4 (gbY12716) and SPRM1 (gbL25068) associate with a type 1 transmembrane glycoprotein that is essential for insertion or activity of the permease and forms a disulfide bridge with it. These glycoproteins include the CD98 heavy chain protein of Mus musculus (gbU25708) and the orthologous 4F2 cell surface antigen heavy chain of Homo sapiens (spP08195). The latter protein is required for the activity of the cystine/glutamate antiporter (2.A.3.8.5) which maintains cellular redox balance and cysteine/glutathione levels (Sato et al., 2005). They are members of the rBAT family of mammalian proteins (TC #8.A.9). Two APC family members, LAT1 and LAT2 (TC #2.A.3.8.7), transport a neurotoxicant, the methylmercury-L-cysteine complex, by molecular mimicry (Simmons-Willis et al., 2002). Hip1 of S. cerevisiae (TC #2.A.3.1.5) has been implicated in heavy metal transport. Distant constituents of the APC superfamily are the AAAP family (TC# 2.A.18), the ArAAP family (TC# 2.A.42) and the STP family (TC# 2.A.43). Some of these proteins exhibit 11 TMSs. Eukaryotic members of this superfamily have been reviewed by Wipf et al. (2002) and Fischer et al. (1998).

In CadB of E. coli (2.A.3.2.2), amino acid residues involved in both uptake and excretion, or solely in excretion, are located in the cytoplasmic loops and the cytoplasmic side of transmembrane segments, whereas residues involved in uptake are located in the periplasmic loops and the transmembrane segments (Soksawatmaekhin et al., 2006). A hydrophilic cavity is proposed to be formed by the transmembrane segments II, III, IV, VI, VII, X, XI, and XII (Soksawatmaekhin et al., 2006). Based on 3-d structures of APC superfamily members, Rudnick (2011) has proposed the pathway for transport and suggested a 'rocking bundle' mechanism.

Shaffer et al. (2009) have presented the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 Å resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like LeuT (TC #2.A.22.4.2). The ApcT structure reveals an inward-facing, apo state and an amine moiety of Lys158 located in a position equivalent to the Na2 ion of LeuT. They proposed that Lys158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.

The structure and function of the cadaverine-lysine antiporter, CadB (2.A.3.2.2), and the putrescine-ornithine antiporter, PotE (2.A.3.2.1), in E. coli have been evaluated using model structures based on the crystal structure of AdiC (2.A.3.2.5), an agmatine-arginine antiporter. The central cavity of CadB, containing the substrate binding site is wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE is dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE are strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB are involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE is involved preferentially in putrescine uptake. The results indicated that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. Several residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine at neutral pH.

The roughly barrel-shaped AdiC subunit of approx45 Å diameter consists of 12 transmembrane helices, TMS1 and TMS6 being interrupted by short non-helical stretches in the middle of their transmembrane spans (Fang et al., 2009). Biochemical analysis of homologues places the amino and carboxy termini on the intracellular side of the membrane. TM1–TM10 surround a large cavity exposed to the extracellular solution. These ten helices comprise two inverted structural repeats. TM1–TM5 of AdiC align well with TM6–TM10 turned 'upside down' around a pseudo-two-fold axis nearly parallel to the membrane plane. Thus, TMS1 pairs with TMS6, TMS2 with TMS7, and etc.. Helices TMS11 and TMS12, non-participants in this repeat, provide most of the 2,500 Å2 homodimeric interface. AdiC mirrors the common fold observed unexpectedly in four phylogenetically unrelated families of Na+-coupled solute transporters: BCCT (2.A.15), NCS1 (2.A.39), SSS (2.A.21) and NSS (2.A.22) (Fang et al., 2009).

Transport reactions catalyzed by APC family members include:

Solute:proton symport - S (out) + nH+ (out) → S (in) + nH+ (in).

Solute:solute antiport - S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out).

 

This family belongs to the: APC Superfamily.

References associated with 2.A.3 family:

and Rudnick G. (2011). Cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry. 50(35):7462-75. 21774491
Aouida, M., A. Leduc, R. Poulin, II, and D. Ramotar. (2005). AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J. Biol. Chem. 280: 24267-24276. 15855155
Aspuria, P.J. and F. Tamanoi. (2008). The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast. Mol. Genet. Genomics 279: 441-450. 18219492
Baisa, G., N.J. Stabo, and R.A. Welch. (2013). Characterization of Escherichia coli D-cycloserine transport and resistant mutants. J. Bacteriol. 195: 1389-1399. 23316042
Bartoccioni, P., C. Del Rio, M. Ratera, L. Kowalczyk, J.M. Baldwin, A. Zorzano, M. Quick, S.A. Baldwin, J.L. Vázquez-Ibar, and M. Palacín. (2010). Role of transmembrane domain 8 in substrate selectivity and translocation of SteT, a member of the L-amino acid transporter (LAT) family. J. Biol. Chem. 285: 28764-28776. 20610400
Bröer, S. (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. 18195088
Brechtel, C.E. and S.C. King. (1998). 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem. J. 333(Pt3): 565-571. 9677314
Cabrera-Martinez, R.-M., F. Tovar-Rojo, V.R. Vepachedu, and P. Setlow. (2003). Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J. Bacteriol. 185: 2457-2464. 12670969
Cappellazzo, G., L. Lanfranco, M. Fitz, D. Wipf, and P. Bonfante. (2008). Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol. 147: 429-437. 18344417
Casagrande, F., M. Ratera, A.D. Schenk, M. Chami, E. Valencia, J.M. Lopez, D. Torrents, A. Engel, M. Palacin, and D. Fotiadis. (2008). Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem. 283: 33240-33248. 18819925
Chairoungdua, A., H. Segawa, J.Y. Kim, K. Miyamoto, H. Haga, Y. Fukui, K. Mizoguchi, H. Ito, E. Takeda, H. Endou, and Y. Kanai. (1999). Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J. Biol. Chem. 274: 28845-28848. 10506124
Chairoungdua, A., Y. Kanai, H. Matsuo, J. Inatomi, D.K. Kim, and H. Endou. (2001). Identification and characterization of a novel member of the heterodimeric amino acid transporter family presumed to be associated with an unknown heavy chain. J. Biol. Chem. 276: 49390-49399. 11591708
Chen, J.M., S. Uplekar, S.V. Gordon, and S.T. Cole. (2012). A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7: e43467. 22912881
Closs, E.I. (1996). CATs, a family of three distinct mammalian cationic amino acid transporters. Amino Acids 11: 193-208. 24178687
Closs, E.I., L.M. Albritton, J.W. Kim, and J.M. Cunningham. (1993). Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268: 7538-7544. 8385111
Cooper, G.R. and A. Moir. (2011). Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267. 21378181
Cosgriff, A.J. and A.J. Pittard. (1997). A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. J. Bacteriol. 179: 3317-3323. 9150230
Cosgriff, A.J., G. Brasier, J. Pi, C. Dogovski, J.P. Sarsero, and A.J. Pittard. (2000). The study of AroP-PheP chimeric proteins and identification of a residue involved in tryptophan transport. J. Bacteriol. 182: 2207-2217. 10735864
Didion, T., B. Regenberg, M.U. Jørgensen, M.C. Kielland-Brandt, and H.A. Andersen. (1998). The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27: 643-650. 9489675
Fang, Y., H. Jayaram, T. Shane, L. Kolmakova-Partensky, F. Wu, C. Williams, Y. Xiong, and C. Miller. (2009). Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460: 1040-1043. 19578361
Fang, Y., L. Kolmakova-Partensky, and C. Miller. (2007). A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem. 282: 176-182. 17099215
Farcasanu, I.C., M. Mizunuma, D. Hirata, and T. Miyakawa. (1998). Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 259: 541-548. 9790586
Fernández, E., D. Torrents, A. Zorzano, M. Palacín, and J. Chillaron. (2005). Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution. J. Biol. Chem. 280: 19364-19372. 15757906
Ferson, A.E., L.V. Wray, Jr, and S.H. Fisher. (1996). Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol. Microbiol. 22: 693-701. 8951816
Fischer, W.-N., B. André, D. Rentsch, S. Krolkiewics, M. Tegeder, K. Breitkreuz, and W.B. Frommer. (1998). Amino acid transport in plants. Trends Plant Sci. 3: 188-195.
Fujita, M. and K. Shinozaki. (2014). Identification of Polyamine Transporters in Plants: Paraquat Transport Provides Crucial Clues. Plant Cell Physiol. [Epub: Ahead of Print] 24590488
Fukasawa, Y., H. Segawa, J.Y. Kim, A. Chairoungdua, D.K. Kim, H. Matsuo, S.H. Cha, H. Endou, and Y. Kanai. (2000). Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J. Biol. Chem. 275: 9690-9698. 10734121
Gao, X., F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, and Y. Shi. (2009). Structure and mechanism of an amino acid antiporter. Science 324: 1565-1568. 19478139
Gasol, E., M. Jiménez-Vidal, J. Chillarón, A. Zorzano, and M. Palacín. (2004). Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility. J. Biol. Chem. 279: 31228-31236. 15151999
Gong, S., H. Richard, and J.W. Foster. (2003). YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J. Bacteriol. 185: 4402-4409. 12867448
Habermeier, A., S. Wolf, U. Martiné, P. Gräf, and E.I. Closs. (2003). Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J. Biol. Chem. 278: 19492-19499. 12637504
Hagiwara, K., S. Nagamori, Y.M. Umemura, R. Ohgaki, H. Tanaka, D. Murata, S. Nakagomi, K.H. Nomura, E. Kage-Nakadai, S. Mitani, K. Nomura, and Y. Kanai. (2012). NRFL-1, the C. elegans NHERF Orthologue, Interacts with Amino Acid Transporter 6 (AAT-6) for Age-Dependent Maintenance of AAT-6 on the Membrane. PLoS One 7: e43050. 22916205
Hammes, U.Z., E. Nielsen, L.A. Honaas, C.G. Taylor, and D.P. Schachtman. (2006). AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. The Plant Journal 48: 414-426. 17052324
Hasne, M.P. and B. Ullman. (2005). Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J. Biol. Chem. 280: 15188-15194. 15632173
Hatori, Y., A. Hirata, C. Toyoshima, D. Lewis, R. Pilankatta, and G. Inesi. (2008). Intermediate phosphorylation reactions in the mechanism of ATP utilization by the copper ATPase (CopA) of Thermotoga maritima. J. Biol. Chem. 283: 22541-22549. 18562314
Hatori, Y., D. Lewis, C. Toyoshima, and G. Inesi. (2009). Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 48: 4871-4880. 19364131
Hatori, Y., E. Majima, T. Tsuda, and C. Toyoshima. (2007). Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J. Biol. Chem. 282: 25213-25221. 17616523
Hu, L.A. and S.C. King. (1998a). Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily. J. Biol. Chem. 273: 20162-20167. 9685361
Hu, L.A. and S.C. King. (1998b). Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem. J. 330: 771-776. 9480889
Hu, L.A. and S.C. King. (1998c). Membrane topology of the Escherichia coli γ-aminobutyrate transporter: implications on the topology and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily. Biochem. J. 336: 69-76. 9806886
Hu, W.S., Y.H. Lin, and C.C. Shih. (2007). A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance. Biochem. Biophys. Res. Commun. 361: 694-699. 17669360
Igarashi, K. and K. Kashiwagi. (1996). Polyamine transport inEscherichia coli. Amino Acids 10: 83-97. 24178434
Igarashi, K. and K. Kashiwagi. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem 48: 506-512. 20159658
Isnard, A.D., D. Thomas, and Y. Surdin-Kerjan. (1996). The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J. Mol. Biol. 262: 473-484. 8893857
Ito, K., and Groudine M. (1997). A New Member of the Cationic Amino Acid Transporter Family Is Preferentially Expressed in Adult Mouse Brain. J. Biol. Chem. 272: 26780-26786. 9334265
Iyer, R., C. Williams, and C. Miller. (2003). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 185: 6556-6561. 14594828
Jack, D.L., I.T. Paulsen, and M.H. Saier, Jr. (2000). The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146: 1797-1814. 10931886
Johnson, D.A., S.G. Tetu, K. Phillippy, J. Chen, Q. Ren, and I.T. Paulsen. (2008). High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet 4: e1000211. 18833300
Johnson, S.S., P.K. Hanson, R. Manoharlal, S.E. Brice, L.A. Cowart, and W.S. Moye-Rowley. (2010). Regulation of Yeast Nutrient Permease Endocytosis by ATP-binding Cassette Transporters and a Seven-transmembrane Protein, RSB1. J. Biol. Chem. 285: 35792-35802. 20826817
Kanai, Y., Y. Fukasawa, S.H. Cha, H. Segawa, A. Chairoungdua, D.K. Kim, H. Matsuo, J.Y. Kim, K. Miyamoto, E. Takeda, and H. Endou. (2000). Transport properties of a system y+L neutral and basic amino acid transporter. J. Biol. Chem. 275: 20787-20793. 10777485
Kanda, N. and F. Abe. (2013). Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 52: 4296-4307. 23768406
Kaper, T., L.L. Looger, H. Takanaga, M. Platten, L. Steinman, and W.B. Frommer. (2007). Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5: e257. 17896864
Kashiwagi, K. and K. Igarashi. (2011). Identification and assays of polyamine transport systems in Escherichia coli and Saccharomyces cerevisiae. Methods Mol Biol 720: 295-308. 21318881
Kashiwagi, K., S. Shibuya, H. Tomitori, A. Kuraishi, and K. Igaragshi. (1997). Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J. Biol. Chem. 272: 6318-6323. 9045651
Kinne, A., R. Schülein, and G. Krause. (2011). Primary and secondary thyroid hormone transporters. Thyroid Res 4Suppl1: S7. 21835054
Kitajima, T., Y. Chiba, and Y. Jigami. (2010). Mutation of high-affinity methionine permease contributes to selenomethionyl protein production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 6351-6359. 20693451
Kowalczyk, L., M. Ratera, A. Paladino, P. Bartoccioni, E. Errasti-Murugarren, E. Valencia, G. Portella, S. Bial, A. Zorzano, I. Fita, M. Orozco, X. Carpena, J.L. Vázquez-Ibar, and M. Palacín. (2011). Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc. Natl. Acad. Sci. USA 108: 3935-3940. 21368142
Kraidlova, L., G. Van Zeebroeck, P. Van Dijck, and H. Sychrová. (2011). The Candida albicans GAP Gene Family Encodes Permeases Involved in General and Specific Amino Acid Uptake and Sensing. Eukaryot. Cell. 10: 1219-1229. 21764911
Krautz-Peterson, G., S. Camargo, K. Huggel, F. Verrey, C.B. Shoemaker, and P.J. Skelly. (2007). Amino acid transport in schistosomes: Characterization of the permease heavy chain SPRM1hc. J. Biol. Chem. 282: 21767-21775. 17545149
Kurihara, S., S. Oda, K. Kato, H.G. Kim, T. Koyanagi, H. Kumagai, and H. Suzuki. (2005). A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280: 4602-4608. 15590624
Li, S. and A.R. Whorton. (2005). Identification of stereoselective transporters for S-nitroso-L-cysteine. Role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J. Biol. Chem. 280: 20102-20110. 15769744
Lorca, G., B. Winnen, and M.H. Saier, Jr. (2003). Identification of the L-aspartate transporter in Bacillus subtilis. J. Bacteriol. 185: 3218-3222. 12730183
Ma, D., P. Lu, C. Yan, C. Fan, P. Yin, J. Wang, and Y. Shi. (2012). Structure and mechanism of a glutamate-GABA antiporter. Nature 483: 632-636. 22407317
Mastroberardino, L., B. Spindler, R. Pfeiffer, P.J. Skelly, J. Loffing, C.B. Shoemaker, and F. Verrey. (1998). Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288-291. 9751058
Matìjèková, A., and H. Sychrová. (1997). Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Letters 408: 89-93. 9180275
Matsuo, H., Y. Kanai, J.Y. Kim, A. Chairoungdua, D.K. Kim, J. Inatomi, Y. Shigeta, H. Ishimine, S. Chaekuntode, K. Tachampa, H.W. Choi, E. Babu, J. Fukuda, and H. Endou. (2002). Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J. Biol. Chem. 277: 21017-21026. 11907033
Meier, C., Z. Ristic, S. Klauser, and F. Verrey. (2002). Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 21: 580-589. 11847106
Merhi, A., N. Gérard, E. Lauwers, M. Prévost, and B. André. (2011). Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One 6: e18457. 21526172
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Neef, J., V.F. Andisi, K.S. Kim, O.P. Kuipers, and J.J. Bijlsma. (2011). Deletion of a cation transporter promotes lysis in Streptococcus pneumoniae. Infect. Immun. 79: 2314-2323. 21422174
Newell, J.L., C.M. Keyari, P.J. Diaz, N.R. Natale, S.A. Patel, and R.J. Bridges. (2013). Novel di-aryl-substituted isoxazoles act as noncompetitive inhibitors of the system xc(↓) cystine/glutamate exchanger. Neurochem Int. [Epub: Ahead of Print] 24333322
Phalip, V., I. Kuhn, Y. Lemoine, and J.M. Jeltsch. (1999). Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 232: 43-51. 10333520
Pineda, M., E. Fernández, D. Torrents, R. Estévez, C. López, M. Camps, J. Lloberas, A. Zorzano, and M. Palacín. (1999). Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, and l-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J. Biol. Chem. 274: 19738-19744. 10391915
Poulsen, P., R.F. Gaber, and M.C. Kielland-Brandt. (2008). Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor. Mol. Membr. Biol. 25: 164-176. 18307103
Pulvermacher, S.C., L.T. Stauffer, and G.V. Stauffer. (2009). Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology 155: 106-114. 19118351
Rauschmeier, M., V. Schüppel, L. Tetsch, and K. Jung. (2013). New Insights into the Interplay Between the Lysine Transporter LysP and the pH Sensor CadC in Escherichia Coli. J. Mol. Biol. [Epub: Ahead of Print] 24056175
Reig, N., C. Del Rio, F. Casagrande, M. Ratera, J.L. Gelpi, D. Torrents, P.J. Henderson, H. Xie, S.A. Baldwin, A. Zorzano, D. Fotiadis, and M. Palacin. (2007). Functional and structural characterization of the first prokaryotic member of the L-amino acid transporter (LAT) family: A model for APC transporters. J. Biol. Chem. 282: 13270-13281. 17344220
Reizer, J., K. Finley, D. Kakuda, C.L. MacLeod, A. Reizer, and M.H. Saier, Jr. (1993). Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Prot. Sci. 2: 20-30. 8382989
Rodionov, D.A., A.G. Vitreschak, A.A. Mironov, and M.S. Gelfand. (2003). Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 31: 6748-6757. 14627808
Rouillon, A., Y. Surdin-Kerjan, and D. Thomas (1999). Transport of Sulfonium compounds: characterization of the S-adneosylmethionine and S-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 28096-28105. 10497160
Saier, M.H., Jr. (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146: 1775-1795. 10931885
Sanders, J.W., K. Leenhouts, J. Burghoorn, J.R. Brands, G. Venema, and J. Kok. (1998). A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310. 9484886
Sato, H., A. Shiiya, M. Kimata, K. Maebara, M. Tamba, Y. Sakakura, N. Makino, F. Sugiyama, K. Yagami, T. Moriguchi, S. Takahashi, and S. Bannai. (2005). Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280: 37423-37429. 16144837
Sato, H., M. Tamba, T. Ishii, and S. Bannai. (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274: 11455-11458. 10206947
Schweikhard, E.S. and C.M. Ziegler. (2012). Amino Acid secondary transporters: toward a common transport mechanism. Curr Top Membr 70: 1-28. 23177982
Segawa, H., Y. Fukasawa, K. Miyamoto, E. Takeda, H. Endou, and Y. Kanai. (1999). Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J. Biol. Chem. 274: 19745-19751. 10391916
Seth, A. and N.D. Connell. (2000). Amino acid transport and metabolism in mycobacteria: cloning, interruption, and characterization of an L-arginine/γ-aminobutyric acid permease in Mycobacterium bovis BCG. J. Bacteriol. 182: 919-927. 10648515
Shaffer, P.L., A. Goehring, A. Shankaranarayanan, and E. Gouaux. (2009). Structure and mechanism of a Na+-independent amino acid transporter. Science 325: 1010-1014. 19608859
Simmons-Willis, T.A., A.S. Koh, T.W. Clarkson, and N. Ballatori. (2002). Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem. J. 367: 239-246. 12117417
Soksawatmaekhin, W., A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi. (2004). Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51: 1401-1412. 14982633
Soksawatmaekhin, W., T. Uemura, N. Fukiwake, K. Kashiwagi, and K. Igarashi. (2006). Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem. 281: 29213-29220. 16877381
Sophianopoulou, V. and G. Diallinas. (1995). Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol. Rev. 16: 53-75. 7888172
Soysa, R., H. Venselaar, J. Poston, B. Ullman, and M.P. Hasne. (2013). Structural Model of a Putrescine-Cadaverine Permease from Trypanosoma cruzi Predicts Residues Vital for Transport and Ligand Binding. Biochem. J. [Epub: Ahead of Print] 23535070
Tachihara, K., T. Uemura, K. Kashiwagi, and K. Igarashi. (2005). Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J. Biol. Chem. 280: 12637-12642. 15668236
Tomitori, H., K. Kashiwagi, and K. Igarashi. (2012). Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Amino Acids 42: 733-740. 21796432
Trip, H., M.E. Evers, W.N. Konings, and A.J.M. Driessen. (2002). Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Biochim. Biophys. Acta 1565: 73-80. 12225854
Uemura, T., K. Kashiwagi, and K. Igarashi. (2007). Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J. Biol. Chem. 282: 7733-7741. 17218313
Veljkovic, E., A. Bacconi, A. Stetak, A. Hajnal, S. Stasiuk, P.J. Skelly, I. Forster, C.B. Shoemaker, and F. Verrey. (2004). Aromatic amino acid transporter AAT-9 of Caenorhabditis elegans localizes to neurons and muscle cells. J. Biol. Chem. 279: 49268-49273. 15364921
Veljkovic, E., S. Stasiuk, P.J. Skelly, C.B. Shoemaker, and F. Verrey. (2004). Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters. J. Biol. Chem. 279: 7655-7662. 14668347
Vogl, C., C.M. Klein, A.F. Batke, M.E. Schweingruber, and J. Stolz. (2008). Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe. J. Biol. Chem. 283: 7379-7389. 18201975
Wehrmann, A., S. Morakkabati, R. Krämer, H. Sahm, and L. Eggeling. (1995). Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. J. Bacteriol. 177: 5991-5993. 7592354
Wiame, E. and E. Van Schaftingen. (2004). Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem. J. 378: 1047-1052. 14641112
Wipf, D., M. Benjdia, M. Tegeder, and W.B. Frommer. (2002). Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett. 528: 119-124. 12297290
Wipf, D., U. Ludewig, M. Tegeder, D. Rentsch, W. Koch, and W.B. Frommer. (2002). Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem. Sci. 27: 139-147. 11893511
Wong, F.H., J.S. Chen, V. Reddy, J.L. Day, M.A. Shlykov, S.T. Wakabayashi, and M.H. Saier, Jr. (2012). The amino acid-polyamine-organocation superfamily. J. Mol. Microbiol. Biotechnol. 22: 105-113. 22627175
Yang, J., Q. Tan, W. Zhu, C. Chen, X. Liang, and L. Pan. (2013). Cloning and molecular characterization of cationic amino acid transporter y(+)LAT1 in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem. [Epub: Ahead of Print] 23817987
Young, G.B., D.L. Jack, D.W. Smith, and M.H. Saier, Jr. (1999). The amino acid/auxin:proton symport permease family. Biochim. Biophys. Acta 1415: 306-322. 9889387
Zaprasis, A., T. Hoffmann, L. Stannek, K. Gunka, F.M. Commichau, and E. Bremer. (2014). The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis. J. Bacteriol. 196: 515-526. 24142252
Zheng, S., S. Shuman, and B. Schwer. (2007). Sinefungin resistance of Saccharomyces cerevisiae arising from Sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Nucleic Acids Res. 35(20):6895-6903. 17932050
Zomot, E. and I. Bahar. (2011). Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. J. Biol. Chem. 286: 19693-19701. 21487006