TCDB is operated by the Saier Lab Bioinformatics Group

2.A.36 The Monovalent Cation:Proton Antiporter-1 (CPA1) Family

The CPA1 family is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue-green bacteria, archaea, yeast, plants and animals. Transporters from eukaryotes have been functionally characterized, and all of these catalyze Na+:H+ exchange. Their primary physiological functions may be in (1) cytoplasmic pH regulation, extruding the H+ generated during metabolism, and (2) salt tolerance (in plants), due to Na+ uptake into vacuoles. Bacterial homologues are also Na+:H+ antiporters, but some also catalyze Li+:H+ antiport or Ca2+:H+ antiport under some conditions (Waditee et al., 2001).

The phylogenetic tree for the CPA1 family shows three principal clusters. The first cluster includes proteins derived exclusively from animals, and all of the functionally characterized members of the family belong to this cluster. Of the two remaining clusters, one includes all bacterial homologues while the other includes one from Arabidopsis thaliana, one from Homo sapiens and two from yeast (S. cerevisiae and S. pombe). Several organisms possess multiple paralogues; for example seven paralogues are found in C. elegans, and five are known for humans. Most of these paralogues are very similar in sequence, and they belong to the animal specific cluster.

Using the mammalian NHE1 (2.A.36.1.1), it has been found that TMSs 4 and 9 as well as the extracellular loop between TMSs 3 and 4 are important for drug (amiloride- and benzoyl guanidinium-based derivatives) sensitivities. Mutations in these regions also affect transport activities. M4 and M9 therefore contain critical sites for both drug and cation recognition.

Daxx, a death domain-associated protein, (O35613) interacts with sodium hydrogen exchanger isoform 1 (NHE1). During ischemic stress, Daxx translocates from the nucleus to the cytoplasm, where it colocalizes with NHE1. Daxx binds to the ezrin/radixin/moesin (ERM)-interacting domain of NHE1, in competition with ezrin. Ischemic insult may trigger the nucleo-cytoplasmic translocation of Daxx, following which cytoplasmic Daxx stimulates the NHE1 transporter activity and suppresses activation of the NHE1-ezrin-Akt-1 pathway (Jung et al., 2007).

One homologue, Nhe (TC #2.A.36.1.4), is a chloride-dependent Na+:H+ antiporter in which residues 1-375 of the 438 aas are identical to Nhe-1 (TC #2.A.36.1.1). The C-terminal 63 residues are unique (Sangan et al., 2002). It is found in the apical membranes of crypt cells of the rat distal colon. This protein was reported to exhibit 6 putative TMSs and is encoded by a 2.5 kb mRNA present in many tissues (Sangan et al., 2002). However, the WHAT program predicts 10 TMSs. nhe transfected fibroblasts exhibit Cl--dependent Na+-dependent intracellular pH recovery to an acid load that was blocked by 5-ethylisopropylamiloride and 5'-nitro-2-(3-phenylpropylamino)benzoate (a Cl- channel blocker).

Numerous members of the CPA1 family have been sequenced, and these proteins vary substantially in size. The bacterial proteins have 527-549 amino acyl residues while eukaryotic proteins are generally larger, varying in size from 541-894 residues. They exhibit 10-12 putative transmembrane α-helical spanners (TMSs). A proposed topological model (Wakabayashi et al., 2000) suggests that in addition to 12 TMSs, a region between TMSs 9 and 10 dips into the membrane to line the pore. However, one homologue, Nhx1 of S. cerevisiae, has an extracellular glycosylated C-terminus (Wells and Rao, 2001).

A gene encoding a Na+/H+ antiporter was cloned from the chromosome of Halobacillus dabanensis strain D-8(T) by functional complementation. Its presence enabled the antiporter-deficient E. coli strain KNabc to survive in the presence of 0.2 M NaCl or 5 mM LiCl (Yang et al. 2006). The gene was sequenced and designated as nhaH (2.A.36.6.7). NhaH has 403 residues and is 54% identical and 76% similar to the NhaG Na+/H+ antiporter of Bacillus subtilis (TC# 2.A.36.6.2). The hydropathy profile was characteristic of a membrane protein with 12 putative transmembrane domains. Everted membrane vesicles prepared from E. coli cells carrying nhaH exhibited Na+/H+ as well as Li+/H+ antiporter activity, which was pH-dependent with highest activities at pH 8.5-9.0 and at pH 8.5, respectively. nhaH confers upon E. coli KNabc cells the ability to grow under alkaline conditions (Yang et al., 2006).

The generalized transport reaction catalyzed by functionally characterized members of the CPA1 family is:

Na+ (out) + H+ (in) ⇌ Na+ (in) + H+ (out).

 

This family belongs to the: CPA Superfamily.

References associated with 2.A.36 family:

An, R., Q.J. Chen, M.F. Chai, P.L. Lu, Z. Su, Z.X. Qin, J. Chen, and X.C. Wang. (2007). AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. Plant J. 49: 718-728. 17270011
Apse, M.P., G.S. Aharon, W.A. Snedden, and E. Blumwald. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258. 10455050
Bañuelos, M.A., H. Sychrová, C. Bleykasten-Grosshans, J.-L. Souciet, and S. Potier. (1998). The Nha1 antiporter of Saccharomyces cerevisiaemediates sodium and potassium efflux. Microbiology 144: 2749-2758. 9802016
Beg, A.A., G.G. Ernstrom, P. Nix, M.W. Davis, and E.M. Jorgensen. (2008). Protons act as a transmitter for muscle contraction in C. elegans. Cell. 132: 149-160. 18191228
Carmosino, M., F. Rizzo, G. Procino, D. Basco, G. Valenti, B. Forbush, N. Schaeren-Wiemers, M.J. Caplan, and M. Svelto. (2010). MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Mol. Biol. Cell 21: 3985-3997. 20861303
Counillon, L. and J. Pouysségur. (2000). The expanding family of eucayotic Na+/H+ exchangers. J. Biol. Chem. 275: 1-4. 10617577
Ferguson, G.P., S. Tötemeyer, M.J. MacLean, and I.R. Booth. (1998). Methylglyoxal production in bacteria: suicide or survival? Arch. Microbiol. 170: 209-219. 9732434
Fuster, D., O.W. Moe, and D.W. Hilgemann. (2008). Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J Gen Physiol 132: 465-480. 18824592
Gaxiola, R.A., R. Rao, A. Sherman, P. Grisafi, S.L. Alper, and G.R. Fink. (1999). The Arabidopsis thalianaproton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96: 1480-1485. 9990049
Goswami, P., C. Paulino, D. Hizlan, J. Vonck, O. Yildiz, and W. Kühlbrandt. (2011). Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO. J. 30: 439-449. 21151096
Gouda, T., M. Kuroda, T. Hiramatsu, K. Nozaki, T. Kuroda, T. Mizushima, and T. Tsuchiya. (2001). nhaG Na+/H+ antiporter gene of Bacillus subtilis ATCC9372, which is missing in the complete genome sequence of strain 168, and properties of the antiporter. J Biochem 130: 711-717. 11686935
Ilie, A., E. Weinstein, A. Boucher, R.A. McKinney, and J. Orlowski. (2013). Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism. Neurochem Int. [Epub: Ahead of Print] 24090639
Inaba, M., A. Sakamoto, and N. Murata. (2001). Functional expression in Escherichia coliof low-affinity and high-affinity Na(+)(Li(+))/H(+) antiporters of Synechocystis. J. Bacteriol.183: 1376-1384. 11157951
Iwaki, T., Y. Higashida, H. Tsuji, Y. Tamai, and Y. Watanabe. (1998). Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxiiand functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14: 1167-1174. 9791888
Jha, A., M. Joshi, N.S. Yadav, P.K. Agarwal, and B. Jha. (2011). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38: 1965-1973. 20853145
Khadilkar, A., P. Iannuzzi, and J. Orlowski. (2001). Identification of sites in the second exomembrane loop and ninth transmembrane helix of the mammalian Na+/H+ exchanger important for drug recognition and cation translocation. J. Biol. Chem. 276: 43792-43800. 11564737
Kinclova-Zimmermannova, O., and H. Sychrová. (2007). Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. Microbiology. 153: 2603-2612. 17660424
Krauke, Y. and H. Sychrova. (2008). Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 8: 80. 18492255
Lee, B.L., B.D. Sykes, and L. Fliegel. (2011). Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach. Biochem. Cell Biol. 89: 189-199. 21455270
Lee, B.L., Y. Liu, X. Li, B.D. Sykes, and L. Fliegel. (2012). Structural and functional analysis of extracellular loop 4 of the Nhe1 isoform of the Na+/H+ exchanger. Biochim. Biophys. Acta. 1818: 2783-2790. 22772156
Liu, T., J.C. Huang, W.L. Zuo, C.L. Lu, M. Chen, X.S. Zhang, Y.C. Li, H. Cai, W.L. Zhou, Z.Y. Hu, F. Gao, and Y.X. Liu. (2010). A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Front Biosci (Elite Ed) 2: 566-581. 20036903
Nass, R.K., W. Cunningham, and R. Rao. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutation in the plasma membrane H+-ATPase. J. Biol. Chem. 272: 26145-26152. 9334180
Numata, M. and J. Orlowski. (2001). Molecular cloning and characterization of a novel (Na+/K+)/H+ exchanger localized to the trans-Golgi network. J. Biol. Chem. 276: 17387-17394. 11279194
Núñez-Ramírez, R., M.J. Sánchez-Barrena, I. Villalta, J.F. Vega, J.M. Pardo, F.J. Quintero, J. Martinez-Salazar, and A. Albert. (2012). Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na+/H+ antiporter. J. Mol. Biol. 424: 283-294. 23022605
Nygaard, E.B., J.O. Lagerstedt, G. Bjerre, B. Shi, M. Budamagunta, K.A. Poulsen, S. Meinild, R.R. Rigor, J.C. Voss, P.M. Cala, and S.F. Pedersen. (2011). Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J. Biol. Chem. 286: 634-648. 20974853
Ohgaki, R., S.C. van IJzendoorn, M. Matsushita, D. Hoekstra, and H. Kanazawa. (2011). Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50: 443-450. 21171650
Orlowski, J. and S. Grinstein. (1997). Na+/H+ exchangers of mammalian cells. J. Biol. Chem. 272: 22373-22376. 9278382
Orlowski, J., R.A. Kandasamy, and G.E. Shull. (1992). Molecular cloning of putative members of the Na+/H+ exchanger gene family. J. Biol. Chem. 267: 9331-9339. 1577762
Patel, H. and D.L. Barber. (2005). A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J. Cell Biol. 169: 321-329. 15851518
Pfeiffer, J., D. Johnson, and K. Nehrke. (2008). Oscillatory transepithelial H+ flux regulates a rhythmic behavior in C. elegans. Curr. Biol. 18: 297-302. 18291648
Radchenko, M.V., R. Waditee, S. Oshimi, M. Fukuhara, T. Takabe, and T. Nakamura. (2006). Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli. Mol. Microbiol. 59: 651-663. 16390457
Reddy, T., J. Ding, X. Li, B.D. Sykes, J.K. Rainey, and L. Fliegel. (2008). Structural and Functional Characterization of Transmembrane Segment IX of the NHE1 Isoform of the Na+/H+ Exchanger. J. Biol. Chem. 283: 22018-22030. 18508767
Reilly, R.F., F. Hildebrandt, D. Biemesderfer, C. Sardet, J. Pouysségur, P.S. Aronson, C.W. Slayman, and P. Igarashi. (1991). cDNA cloning and immunolocalization of a Na+-H+ exchanger in LLC-PK1 renal epithelial cells. Am. J. Physiol. 261: F1088-F1094. 1661081
Resch, C.T., J.L. Winogrodzki, C.T. Patterson, E.J. Lind, M.J. Quinn, P. Dibrov, and C.C. Häse. (2010). The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry 49: 2520-2528. 20163190
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sangan, P., V.M. Rajendran, J.P. Geibel, and H.J. Binder. (2002). Cloning and expression of a chloride-dependent Na+-H+ exchanger. J. Biol. Chem. 277: 9668-9675. 11773056
Seidler, U., A.K. Singh, A. Cinar, M. Chen, J. Hillesheim, B. Hogema, and B. Riederer. (2009). The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann. N.Y. Acad. Sci. 1165: 249-260. 19538313
Simonin A. and Fuster D. (2010). Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem. 285(49):38293-303. 20855896
Tse, C.M., A.I. Ma, V.W. Yang, A.J. Watson, S. Levine, M.H. Montrose, J. Potter, C.Sardet, J. Pouysségur, and M. Donowitz. (1991). Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J. 10: 1957-1967. 1712287
Tzeng, J., B.L. Lee, B.D. Sykes, and L. Fliegel. (2010). Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H+ exchanger. J. Biol. Chem. 285: 36656-36665. 20843797
Ullah, A., G. Kemp, B. Lee, C. Alves, H. Young, B.D. Sykes, and L. Fliegel. (2013). Structural and Functional Analysis of Transmembrane Segment IV of the Salt Tolerance Protein Sod2. J. Biol. Chem. [Epub: Ahead of Print] 23836910
Venema, K., F.J. Quintero, J.M. Pardo, and J.P. Donaire. (2002). The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J. Biol. Chem. 277: 2413-2418. 11707435
Waditee, R., T. Hibino, Y. Tanaka, T. Nakamura, A. Incharoensakdi, and T. Takabe. (2001). Halotolerant cyanobacerium Aphanothece halophyticacontains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J. Biol. Chem. 276: 36931-36938. 11479290
Wakabayashi, S., T. Hisamitsu, and T.Y. Nakamura. (2013). Regulation of the cardiac Na+/H+ exchanger in health and disease. J Mol. Cell Cardiol 61: 68-76. 23429007
Wakabayashi, S., T. Pang, X. Su, and M. Shigekawa. (2000). A novel topology model of the human Na+/H+ exchanger isoform 1. J. Biol. Chem. 275: 7942-7949. 10713111
Wang, X., F. Xu, and S. Chen. (2013). Metagenomic cloning and characterization of Na⁺/H⁺ antiporter genes taken from sediments in Chaerhan Salt Lake in China. Biotechnol Lett 35: 619-624. 23247569
Wang, X., R. Yang, B. Wang, G. Liu, C. Yang, and Y. Cheng. (2011). Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38: 4813-4822. 21153767
Wei, Y., J. Liu, Y. Ma, and T.A. Krulwich. (2007). Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology. 153: 2168-2179. 17600061
Wells, K.M. and R. Rao. (2001). The yeast Na+/H+ exchanger Nhx1 is an N-linked glycoprotein. J. Biol. Chem. 276: 3401-3407. 11036065
Xiang, M., M. Feng, S. Muend, and R. Rao. (2007). A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc. Natl. Acad. Sci. U.S.A. 104: 18677-186781. 18000046
Yan, J.J., M.Y. Chou, T. Kaneko, and P.P. Hwang. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. Cell Physiol. 293: C1814-1823. 17913841
Yang, L.F., J.Q. Jiang, B.S. Zhao, B. Zhang, d.e.Q. Feng, W.D. Lu, L. Wang, and S.S. Yang. (2006). A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol. Lett. 255: 89-95. 16436066