TCDB is operated by the Saier Lab Bioinformatics Group

2.A.53 The Sulfate Permease (SulP) Family

The SulP family is a large and ubiquitous family with members derived from archaea, bacteria, fungi, plants and animals. Many organisms including Bacillus subtilis, Synechocystis sp, Saccharomyces cerevisiae, Arabidopsis thaliana and Caenorhabditis elegans possess multiple SulP family paralogues. Many of these proteins are functionally characterized, and most are inorganic anion uptake transporters or anion:anion exchange transporters. Some transport their substrate(s) with high affinities, while others transport it or them with relatively low affinities. Many function by SO42-:H+ symport, but SO42-:HCO3-, or more generally, anion:anion antiport has been reported for several homologues. For example the mouse homologue, Slc26a6 (TC #2.A.53.2.7), can transport sulfate, formate, oxalate, chloride and bicarbonate, exchanging any one of these anions for another (Jiang et al., 2002). A cyanobacterial homologue can transport nitrate (Maeda et al., 2006). Some members can function as channels (Ohana et al., 2011). 2.A.53.2.3 (SLC26a3) and SLC26a6 (2.A.53.2.7 and 8) can function as carriers or channels, depending on the transported anion (Ohana et al., 2011). In these porters, mutating a glutamate, also involved in transport in the CIC family (2.A.49), (E357A in SLC26a6) created a channel out of the carrier. It also changed the stoichiometry from 2Cl-/HCO3- to 1Cl-/HCO3- (Ohana et al., 2011).

Some paralogs function as anion exchangers, others as anion channels, and one - prestin (SLC26A5) - represents a membrane-bound motor protein in outer hair cells of the inner ear. All SulPs appear to be assembled as dimers composed of two identical subunits (Detro-Dassen et al., 2007). Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. An evolutionarily conserved dimeric quaternary structure may represent the native and functional state of SulP transporters (Detro-Dassen et al., 2007). A low resolution structure of a bacterial SulP transporter revealed a dimeric stoichiometry, stabilized via its transmembrane core and mobile intracellular domains. The cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. The structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.

The bacterial proteins vary in size from 434 residues to 573 residues with only a few exceptions. The eukaryotic proteins vary in size from 611 residues to 893 residues with a few exceptions. Thus, the eukaryotic proteins are usually larger than the prokaryotic homologues. These proteins exhibit 10-13 putative transmembrane α-helical spanners (TMSs) depending on the protein.

One of the distant SulP homologues has been shown to be a bicarbonate:Na+ symporter (TC#2.A.53.5.1) (Price et al., 2004). Bioinformatic work has identified additional homologues with fused domains (Felce and Saier, 2005). Some of these fused proteins have SulP homologues fused to carbonic anhydrase homologues (TC #2.A.53.8.1). These are also presumed to be bicarbonate uptake permeases (Felce and Saier, 2005). Another has SulP fused to Rhodanese, a sulfate:cyanide sulfotransferase (TC #2.A.53.9.1). This SulP homologue is presumably a sulfate transporter.

One member of the SulP family, SLC26a3, has been knocked out in mice (Schweinfest et al., 2006). Apical membrane chloride/base exchange activity was sharply reduced, and luminal content was more acidic in slc26a3-null mouse colon. The epithelial cells in the colon displayed unique adaptive regulation of ion transporters; NHE3 expression was enhanced in the proximal and distal colon, whereas colonic H,K-ATPase and the epithelial sodium channel showed massive up-regulation in the distal colon. Plasma aldosterone was increased in slc26a3-null mice. Thus, slc26a3 is the major apical chloride/base exchanger and is essential for the absorption of chloride in the colon. In addition, slc26a3 regulates colonic crypt proliferation. Deletion of slc26a3 results in chloride-rich diarrhea and is associated with compensatory adaptive up-regulation of ion-absorbing transporters.

MOT1 from Arabidopsis thaliana (TC# 2.A.53.11.1, 456aas; 8-10 TMSs), a distant homologue of the SulP and BenE (2.A.46) families, is expressed in both roots and shoots, and is localized to plasma membranes and intracellular vesicles. MOT1 is required for efficient uptake and translocation of molybdate as well as for normal growth under conditions of limited molybdate supply. Kinetic studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Mo uptake by MOT1 in yeast is not affected by the presence of sulfate. MOT1 did not complement a sulfate transporter-deficient yeast mutant strain (Tomatsu et al., 2007). MOT1 is thus specific for molybdate. The high affinity of MOT1 allows plants to obtain scarce Mo from soil when its concentration is about 10nM.

SLC26 proteins function as anion exchangers and Cl- channels. Ousingsawat et al. (2012) examined the functional interaction between CFTR and SLC26A9 in polarized airway epithelial cells and in non-polarized HEK293 cells expressing CFTR and SLC26A9 (2.A.56.2.10). They found that SLC26A9 provides a constitutively active basal Cl- conductance in polarized grown CFTR-expressing CFBE airway epithelial cells, but not in cells expressing F508del-CFTR. In polarized CFTR-expressing cells, SLC26A9 also contributes to both Ca2+ - and CFTR-activated Cl- secretion. In contrast in non-polarized HEK293 cells co-expressing CFTR/SLC26A9, the baseline Cl- conductance provided by SLC26A9 was inhibited during activation of CFTR. Thus, SLC26A9 and CFTR behave differentially in polarized and non-polarized cells, explaining earlier conflicting data.

The generalized transport reactions catalyzed by SulP family proteins are:

(1) SO42- (out) + nH+ (out) → SO42- (in) + nH+ (in)

(2) SO42- (out) + nHCO3- (in) ⇌ SO42- (in) + nHCO3- (out)

(3) I- and other anions (out) ⇌ I- and other anions (in)

(4) HCO3-(out) + nH+(out) → HCO3- (in) + nH+ (in)

This family belongs to the: APC Superfamily.

References associated with 2.A.53 family:

Babu, M., J.F. Greenblatt, A. Emili, N.C. Strynadka, R.A. Reithmeier, and T.F. Moraes. (2010). Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure 18: 1450-1462. 21070944
Bai, J.P., A. Surguchev, S. Montoya, P.S. Aronson, J. Santos-Sacchi, and D. Navaratnam. (2009). Prestin's anion transport and voltage-sensing capabilities are independent. Biophys. J. 96: 3179-3186. 19383462
Bassot, C., G. Minervini, E. Leonardi, and S.C. Tosatto. (2016). Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie. [Epub: Ahead of Print] 27771369
Bissig, M., B. Hagenbuch, B. Stieger, T. Koller, and P.J. Meier. (1994). Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J. Biol. Chem. 269: 3017-3021. 8300633
Chang, M.H., C. Plata, K. Zandi-Nejad, A. Sindić, C.R. Sussman, A. Mercado, V. Broumand, V. Raghuram, D.B. Mount, and M.F. Romero. (2009). Slc26a9--anion exchanger, channel and Na+ transporter. J. Membr. Biol. 228: 125-140. 19365592
Chen AP., Chang MH. and Romero MF. (2012). Functional analysis of nonsynonymous single nucleotide polymorphisms in human SLC26A9. Hum Mutat. 33(8):1275-84. 22544634
Chernova, M.N., L. Jiang, D.J. Friedman, R.B. Darman, H. Lohi, J. Kere, D.H. Vandorpe, and S.L. Alper. (2005). Functional comparison of mouse Slc26a6 anion exchanger with human SLC26A6 polypeptide variants. Differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 280: 8564-8580. 15548529
Clark, J.S., D.H. Vandorpe, M.N. Chernova, J.F. Heneghan, A.K. Stewart, and S.L. Alper. (2008). Species differences in Cl- affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl- exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J. Physiol. 586: 1291-1306. 18174209
Compton, E.L., E. Karinou, J.H. Naismith, F. Gabel, and A. Javelle. (2011). Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J. Biol. Chem. 286: 27058-27067. 21659513
Dawson, P.A., P. Sim, D.W. Mudge, and D. Cowley. (2013). Human SLC26A1 Gene Variants: A Pilot Study. ScientificWorldJournal 2013: 541710. 24250268
Detro-Dassen, S., M. Schänzler, H. Lauks, I. Martin, S.M. zu Berstenhorst, D. Nothmann, D. Torres-Salazar, P. Hidalgo, G. Schmalzing, and C. Fahlke. (2008). Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J. Biol. Chem. 283(7): 4177-4188. 18073211
Dorwart, M.R., N. Shcheynikov, J.M. Baker, J.D. Forman-Kay, S. Muallem, and P.J. Thomas. (2008). Congenital chloride-losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3. J. Biol. Chem. 283: 8711-8722. 18216024
Felce, J. and M.H. Saier, Jr. (2005). Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J. Mol. Microbiol. Biotechnol. 8: 169-176. 16088218
Fitzpatrick, K.L., S.D. Tyerman, and B.N. Kaiser. (2008). Molybdate transport through the plant sulfate transporter SHST1. FEBS Lett. 582: 1508-1513. 18396170
Garnett, J.P., E. Hickman, R. Burrows, P. Hegyi, L. Tiszlavicz, A.W. Cuthbert, P. Fong, and M.A. Gray. (2011). Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J. Biol. Chem. 286: 41069-41082. 21914796
Geertsma, E.R., Y.N. Chang, F.R. Shaik, Y. Neldner, E. Pardon, J. Steyaert, and R. Dutzler. (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22: 803-808. 26367249
Gorbunov, D., M. Sturlese, F. Nies, M. Kluge, M. Bellanda, R. Battistutta, and D. Oliver. (2014). Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5: 3622. 24710176
Hastbacka, J., A. De La Chapelle, M.M. Mahtani, G. Clines, M.P. Reeve-Daly, M. Daly, B.A. Hamilton, K. Kusumi, B. Trivedi, A. Weaver, A. Coloma, M. Lovett, A. Buckler, I. Kaitila, and E.S. Landers. (1994). The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073-1087. 7923357
Hastbacka, J., A. Superti-Furga, W.R. Wilcox, D.L. Rimoin, D.H. Cohn, and E.S. Landers. (1996) Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58: 255-262.
Hayashi, H., K. Suruga, and Y. Yamashita. (2009). Regulation of intestinal Cl-/HCO3- exchanger SLC26A3 by intracellular pH. Am. J. Physiol. Cell Physiol. 296: C1279-1290. 19321737
He DZ., Lovas S., Ai Y., Li Y. and Beisel KW. (2014). Prestin at year 14: progress and prospect. Hear Res. 311:25-35. 24361298
Ishihara, K., S. Okuyama, S. Kumano, K. Iida, H. Hamana, M. Murakoshi, T. Kobayashi, S. Usami, K. Ikeda, Y. Haga, K. Tsumoto, H. Nakamura, N. Hirasawa, and H. Wada. (2010). Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res 270: 110-118. 20826203
Jiang, Z., I.I. Grichtchenko, W.F. Boron, and P.S. Aronson. (2002). Specificity of anion exhange mediated by mouse Slc26a6. J. Biol. Chem. 277: 33963-33967. 12119287
Ketter, J.S., G. Jarai, Y.H. Fu, and G.A. Marzluf. (1991). Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. J. Biochem. 30: 1780-1787. 1825178
Kim, K.H., N. Shcheynikov, Y. Wang, and S. Muallem. (2005). SLC26A7 is a Cl- channel regulated by intracellular pH. J. Biol. Chem. 280: 6463-6470. 15591059
Knauf, F., C.L. Yang, R.B. Thomson, S.A. Mentone, G. Giebisch, and P.S. Aronson. (2001). Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc. Natl. Acad. Sci. USA 98: 9425-9430. 11459928
Krusell, L., K. Krause, T. Ott, G. Desbrosses, U. Krämer, S. Sato, Y. Nakamura, S. Tabata, E.K. James, N. Sandal, J. Stougaard, M. Kawaguchi, A. Miyamoto, N. Suganuma, and M.K. Udvardi. (2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17: 1625-1636. 15805486
Lee, A., L. Beck, and D. Markovich. (2003). The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22: 19-31. 12590734
Liberman, M.C., J. Gao, D.Z.Z. He, X. Wu, S. Jia, and J. Zuo. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419: 300-304. 12239568
Lohi, H., M. Kujala, S. Mäkela, E. Lehtonen, M. Kestilä, U. Saarialho-Kere, D. Markovich, and J. Kere. (2002). Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 277: 14246-14254. 11834742
Lovas S., He DZ., Liu H., Tang J., Pecka JL., Hatfield MP. and Beisel KW. (2015). Glutamate transporter homolog-based model predicts that anion-pi interaction is the mechanism for the voltage-dependent response of prestin. J Biol Chem. 290(40):24326-39. 26283790
Ludwig, J., D. Oliver, G. Frank, N. Klöcker, A.W. Gummer, and B. Fakler. (2001). Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc. Natl. Acad. Sci. USA 98: 4178-4183. 11274441
Maeda, S., Sugita, C., Sugita, M., and Omata, T. (2006). Latent nitrate transport activity of a novel sulfate permease-like protein of the cyanobacterium Synechococcus elongatus. J. Biol Chem. 281: 5869-5876. 16407232
McGuire, R.M., J.J. Silberg, F.A. Pereira, and R.M. Raphael. (2011). Selective cell-surface labeling of the molecular motor protein prestin. Biochem. Biophys. Res. Commun. 410: 134-139. 21651892
Melvin, J.E., K. Park, L. Richardson, P.J. Schultheis, and G.E. Shull. (1999). Mouse down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J. Biol. Chem. 274: 22855-22861. 10428871
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Moseley, R.H., P. Höglund, G.D. Wu, D.G. Silberg, S. Haila, A. de la Chapelle, C. Holmberg, and J. Kere. (1999). Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am. J. Physiol. 276: G185-192. 9886994
Ohana E., Shcheynikov N., Park M. and Muallem S. (2012). Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SOFormula/OH-/Cl- Exchanger Regulated by Extracellular Cl-. J Biol Chem. 287(7):5122-32. 22190686
Ohana E., Yang D., Shcheynikov N. and Muallem S. (2009). Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol. 587(Pt 10):2179-85. 19015189
Ohana, E., N. Shcheynikov, D. Yang, I. So, and S. Muallem. (2011). Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters. J Gen Physiol 137: 239-251. 21282402
Oliver, D., D.Z.Z. He, N. Klöcker, J. Ludwig, U. Schulte, S. Waldegger, J.P. Ruppersberg, P. Dallos, and B. Fakler. (2001). Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292: 2340-2343. 11423665
Ousingsawat, J., R. Schreiber, and K. Kunzelmann. (2012). Differential contribution of SLC26A9 to Cl- conductance in polarized and non-polarized epithelial cells. J Cell Physiol 227: 2323-2329. 21809345
Pasqualetto, E., R. Aiello, L. Gesiot, G. Bonetto, M. Bellanda, and R. Battistutta. (2010). Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J. Mol. Biol. 400: 448-462. 20471983
Pedemonte, N., E. Caci, E. Sondo, A. Caputo, K. Rhoden, U. Pfeffer, M. Di Candia, R. Bandettini, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. (2007). Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 178: 5144-5153. 17404297
Price, G.D. and S.M. Howitt. (2014). Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol. Membr. Biol. 31: 177-182. 25222859
Price, G.D., F.J. Woodger, M.R. Badger, S.M. Howitt, and L. Tucker. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. USA 101: 18228-18233. 15596724
Regeer, R.R., A. Lee, and D. Markovich. (2003). Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22: 107-117. 12713736
Rouached, H., M. Wirtz, R. Alary, R. Hell, A.B. Arpat, J.C. Davidian, P. Fourcroy, and P. Berthomieu. (2008). Differential Regulation of the Expression of Two High-Affinity Sulfate Transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol. 147: 897-911. 18400935
Royaux, I.E., S.M. Wall, L.P. Karniski, L.A. Everett, K. Suzuki, M.A. Knepper, and E.D. Green. (2001). Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc. Natl. Acad. Sci. USA 98: 4221-4226. 11274445
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sala-Rabanal, M., Z. Yurtsever, K.N. Berry, and T.J. Brett. (2015). Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015: 497387. 26612971
Schaechinger, T.J., and D. Oliver. (2007). Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc. Natl. Acad. Sci. U.S.A. 104: 7693-7698. 17442754
Schaechinger, T.J., D. Gorbunov, C.R. Halaszovich, T. Moser, S. Kügler, B. Fakler, and D. Oliver. (2011). A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. EMBO. J. 30: 2793-2804. 21701557
Schweinfest, C.W., D.D. Spyropoulos, K.W. Henderson, J.H. Kim, J.M Chapman, S. Barone, R.T. Worrell, Z. Wang, and M. Soleimani. (2006). slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J. Biol. Chem. 281: 37962-37971. 17001077
Sharma, A.K., L. Ye, C.E. Baer, K. Shanmugasundaram, T. Alber, S.L. Alper, and A.C. Rigby. (2011). Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J. Biol. Chem. 286: 8534-8544. 21190940
Sharma, A.K., L. Ye, S.L. Alper, and A.C. Rigby. (2012). Guanine nucleotides differentially modulate backbone dynamics of the STAS domain of the SulP/SLC26 transport protein Rv1739c of Mycobacterium tuberculosis. FEBS J. 279: 420-436. 22118659
Shcheynikov, N., Y. Wang, M. Park, S.B. Ko, M. Dorwart, S. Naruse, P.J. Thomas, and S. Muallem. (2006). Coupling modes and stoichiometry of Cl- -/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127: 511-24. 16606687
Shelden, M.C., S.M. Howitt, and G.D. Price. (2010). Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol. Membr. Biol. 27: 12-23. 19951076
Shibagaki, N. and A.R. Grossman. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J. Biol. Chem. 281: 22964-22973. 16754669
Shibagaki, N. and A.R. Grossman. (2010). Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. J. Biol. Chem. 285: 25094-25102. 20529854
Smith, F.W., M.J. Hawkesford, I.M. Prosser, and D.T. Clarkson. (1995). Isolation of cDNA from Saccharomyces cerevisiae that encodes a high affinity sulfate transporter at the plasma membrane. Mol. Gen. Genet. 247: 709-715. 7616962
Smith, F.W., P.M. Ealing, M.J. Hawkesford, and D.T. Clarkson. (1995). Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92: 9373-9377. 7568135
Stewart, A.K., B.E. Shmukler, D.H. Vandorpe, F. Reimold, J.F. Heneghan, M. Nakakuki, A. Akhavein, S. Ko, H. Ishiguro, and S.L. Alper. (2011). SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am. J. Physiol. Cell Physiol. 301: C289-303. 21593449
Takahashi, H., N. Sasakura, M. Noji, and K. Saito. (1996). Isolation and characterization of a cDNA encoding the sulfate transporter from Arabidopsis thaliana. FEBS Lett. 392: 95-99. 8772182
Tomatsu, H., J. Takano, H. Takahashi, A. Watanabe-Takahashi, N. Shibagaki, and T. Fujiwara. (2007). An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc. Natl. Acad. Sci. USA 104: 18807-12. 18003916
Walker NM., Simpson JE., Hoover EE., Brazill JM., Schweinfest CW., Soleimani M. and Clarke LL. (2011). Functional activity of Pat-1 (Slc26a6) Cl(-)/HCO(-) exchange in the lower villus epithelium of murine duodenum. Acta Physiol (Oxf). 201(1):21-31. 20969732
Wall, S.M., and V. Pech. (2008). The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 17: 18-24. 18090665
Xiao, F., M. Juric, J. Li, B. Riederer, S. Yeruva, A.K. Singh, L. Zheng, S. Glage, G. Kollias, P. Dudeja, D.A. Tian, G. Xu, J. Zhu, O. Bachmann, and U. Seidler. (2012). Loss of downregulated in adenoma (DRA) impairs mucosal HCO3- secretion in murine ileocolonic inflammation. Inflamm Bowel Dis 18: 101-111. 21557395
Zolotarev, A.S., M. Unnikrishnan, B.E. Shmukler, J.S. Clark, D.H. Vandorpe, N. Grigorieff, E.J. Rubin, and S.L. Alper. (2008). Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol 149: 255-266. 18255326