TCDB is operated by the Saier Lab Bioinformatics Group

2.A.66 The Multidrug/Oligosaccharidyl-lipid/Polysaccharide (MOP) Flippase Superfamily

The MOP flippase superfamily includes eight distantly related families, five for which functional data are available: One ubiquitous family (MATE) specific for drugs, one (PST) specific for polysaccharides and/or their lipid-linked precursors in prokaryotes, one (OLF) specific for lipid-linked oligosaccharide precursors of glycoproteins in eukaryotes, one (AgnG) which includes a single functionally characterized member that extrudes the antibiotic, Agrocin 84, and one (MVI) of unknown transport function. The OLF family is found in the endoplasmic reticular membranes of eukaryotes. All functionally characterized members of the MOP superfamily catalyze efflux of their substrates, presumably by cation antiport.

2.A.66.1 The Multi Antimicrobial Extrusion (MATE) Family

The MATE family includes a functionally characterized multidrug efflux system from Vibrio parahaemolyticus NorM, and several homologues from other closely related bacteria that function by a drug:Na+ antiport mechanism, a putative ethionine resistance protein of Saccharomyces cerevisiae, a cationic drug efflux pump in A. thaliana and the functionally uncharacterized DNA damage-inducible protein F (DinF) of E. coli. The bacterial proteins are of about 450 amino acyl residues in length and exhibit 12 putative TMS. They arose by an internal gene duplication event from a primordial 6 TMS encoding genetic element. The yeast proteins are larger (up to about 700 residues) and exhibit about 12 TMSs.

Human MATE1 (hMATE1) is an electroneutral H+/organic cation (OC) exchanger responsible for the final excretion step of structurally unrelated toxic organic cations in kidney and liver. Glu273, Glu278, Glu300 and Glu389 are conserved in the transmembrane regions. Substitution with alanine or aspartate reduced export of tetraethylammonium (TEA) and cimetidine, and several had altered substrate affinities (Matsumoto et al., 2008). Thus, all of these glutamate residues are involved in binding and/or transport of TEA and cimetidine, but their roles are different.

The family includes hundreds of functionally uncharacterized but sequenced homologues from bacteria, archaea, and all eukaryotic kingdoms (Kuroda and Tsuchiya, 2009).

The probable transport reaction catalyzed by NorM, and possibly by other proteins of the MATE family is:

Antimicrobial (in) + nNa+ (out) → Antimicrobial (out) + nNa+ (in).

2.A.66.2 The Polysaccharide Transport (PST) Family

The protein members of the PST family are generally of 400-500 amino acyl residues in size and traverse the membrane as putative α-helical spanners twelve times. Analyses conducted in 1997 showed that they formed two major clusters. One is concerned with lipopolysaccharide O-antigen (undecaprenol pyrophosphate-linked O-antigen repeat unit) export (flipping from the cytoplasmic side to the periplasmic side of the inner membranes) in Gram-negative bacteria. On the periplasmic side, polymerization occurs catalyzed by Wzy. The other is concerned with exopolysaccharide or capsular polysaccharide export in both Gram-negative and Gram-positive bacteria. However, arachaeal and eukaryotic homologues are now recognized. The mechanism of energy coupling is not established, but homology with the MATE family suggests that they are secondary carriers.  A review of Wzx undecaprenyl pyrophosphate (UndPP)-linked polysaccharide repeat units occurs by a substrate:product antiport mechanism (Islam and Lam 2012). These transporters may function together with auxiliary proteins that allow passage across just the cytoplasmic membrane or both membranes of the Gram-negative bacterial envelope.  They may also regulate transport. Thus, each Gram-negative bacterial PST system specific for an exo- or capsular polysaccharide functions in conjunction with a cytoplasmic membrane-periplasmic auxiliary (MPA) protein with a cytoplasmic ATP-binding domain (MPA1-C; TC #3.C.3) as well as an outer membrane auxiliary protein (OMA; TC #3.C.5). Each Gram-positive bacterial PST system functions in conjunction with a homologous MPA1 + C pair of proteins equivalent to an MPA1-C proteins of Gram-negative bacteria. The C-domain has been shown to possess tyrosine protein kinase activity, so it may function in a regulatory capacity. The lipopolysaccharide exporters may function specifically in the translocation of the lipid-linked O-antigen side chain precursor from the inner leaflet of the cytoplasmic membrane to the outer leaflet (Islam and Lam 2012). In this respect they correlate in function with the members of the oligosaccharidyl-lipid flippase (OLF) family of the MOP flippase superfamily.

The generalized transport reaction catalyzed by PST family proteins is:

Polysaccharide (in) + energy → Polysaccharide (out).


2.A.66.3 The Oligosaccharidyl-lipid Flippase (OLF) Family

N-linked glycosylation in eukaryotic cells follows a conserved pathway in which a tetradecasaccharide substrate (Glc3Man9GlcNAc2) is initially assembled in the ER membrane as a dolichylpyrophosphate (Dol-PP)-linked intermediate before being transferred to an asparaginyl residue in a lumenal protein. An intermediate, Man5GlcNAc2-PP-Dol is made on the cytoplasmic side of the membrane and translocated across the membrane so that the oligosaccharide chain faces the ER lumen where biosynthesis continues to completion.

The flippase that catalyzes the translocation step is dependent on the Rft1 protein of S. cerevisiae (Helenius et al., 2002). Homologues are found in plants, animals and fungi including C. elegans, D. melanogaster, H. sapiens, A. thaliana, S. cerevisiae and S. pombe. The yeast protein, called the nuclear division Rft1 protein, is 574 aas with 12 putative TMSs. The homologue in A. thaliana is 401 aas in length with 8 or 9 putative TMSs while that in C. elegans is 522 aas long with 11 putative TMSs. These proteins are distantly related to MATE and PST family members and therefore are probably secondary carriers.

2.A.66.4 The Mouse Virulence Factor (MVF) Family

A single member of the MVF family, MviN of Salmonella typhimurium, has been shown to be an important virulence factor for this organism when infecting the mouse (Kutsukake et al., 1994). In several bacteria, mviN genes occur in operons including glnD genes that encode the uridylyl transferase that participates in the regulation of nitrogen metabolism (Rudnick et al., 2001). Nothing more is known about the function of this protein or any other member of the MVF family. However, these proteins are related to members of the PST and MATE families (>9 S.D.), and the greatest sequence similarity is found with members of the PST family. It is therefore possible that MVF family members are functionally related to PST family members and catalyze efflux by a cation antiport mechanism.

2.A.66.5 The Agrocin 84 Antibiotic Exporter (AgnG) Family

Agrocin 84 is a disubstituted adenine nucleotide antibiotic made by and specific for Agrobacteria. It is encoded by the pAgK84 plasmid of A. tumefaciens (Kim et al., 2006) and targets a tRNA synthetase (Reader et al., 2005). The agnG gene encodes a protein of 496 aas with 12-13 putative TMSs and a short hydrophilic N-terminal domain of 80 residues. AgnG is distantly related to members of the Mop superfamily, but is so distant, that it does not retrieve any such members in a TC BLAST search. Nevertheless, an NCBI BLAST search retrieves proteins of the PST and MVI families without iterations. agnG null mutants accumulate agrocin 84 intracellularly and do not export it (Kim et al., 2006).

The reaction catalyzed by AgnG is:

agrocin (in) agrocin (out)


2.A.66.6 The Putative Exopolysaccharide Exporter (EPS-E) Family

2.A.66.7 Putative O-Unit Flippase (OUF) Family

2.A.66.8 Unknown MOP-1 (U-MOP1) Family

2.A.66.9 The Progressive Ankylosis (Ank) Family

Craniometaphyseal dysplasia (CMD) is a bone dysplasia characterized by overgrowth and sclerosis of the craniofacial bones and abnormal modeling of the metaphyses of the tubular bones. Hyperostosis and sclerosis of the skull may lead to cranial nerve compressions resulting in hearing loss and facial palsy. An autosomal dominant form of the disorder has been linked to chromosome 5p15.2-p14.1 within a region harboring the human homolog (ANKH) of the mouse progressive ankylosis (ank) gene. The ANK protein spans the cell membrane and shuttles inorganic pyrophosphate (PPi), a major inhibitor of physiologic and pathologic calcification, bone mineralization and bone resorption (Nurnberg et al., 2001).

The ANK protein has 12 membrane-spanning helices with a central channel permitting the passage of PPi. Mutations occur at highly conserved amino acid residues presumed to be located in the cytosolic portion of the protein. The PPi channel ANK is concerned with bone formation and remodeling (Nurnberg et al., 2001).

2.A.66.10 LPS Precursor Flippase (LPS-F) Family


2.A.66.11 Uncharacterized MOP-11 (U-MOP11) Family


2.A.66.12 Uncharacterized MOP-12 (U-MOP12) Family


References associated with 2.A.66 family:

Brown, D.G., J.K. Swanson, and C. Allen. (2007). Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl. Environ. Microbiol. 73: 2777-2786. 17337552
Brown, M.H., I.T. Paulsen, and R.A. Skurray. (1999). The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol. 31: 394-395. 9987140
Butler, E.K., R.M. Davis, V. Bari, P.A. Nicholson, and N. Ruiz. (2013). Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. J. Bacteriol. [Epub: Ahead of Print] 23935042
Cao, X., Q. Wang, Q. Liu, H. Liu, H. He, and Y. Zhang. (2010). Vibrio alginolyticus MviN is a LuxO-regulated protein and affects cytotoxicity toward EPC cell. J Microbiol Biotechnol 20: 271-280. 20208429
Carr, G., S.H. Moochhala, L. Eley, A. Vandewalle, N.L. Simmons, and J.A. Sayer. (2009). The pyrophosphate transporter ANKH is expressed in kidney and bone cells and colocalises to the primary cilium/basal body complex. Cell Physiol Biochem 24: 595-604. 19910700
Chen, J., Y. Morita, M.N. Huda, T. Kuroda, T. Mizushima, and T. Tsuchiya. (2002). VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J. Bacteriol. 184: 572-576. 11751837
Cunneen, M.M. and P.R. Reeves. (2008). Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol. Lett. 287: 76-84. 18707624
Damjanovic, M., A.S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer. (2007). The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J. Bacteriol. 189: 7105-7111. 17660291
Diener, A.C., R.A. Gaxiola, and G.R. Fink. (2001). Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. The Plant Cell 13: 1625-1637. 11449055
Dridi, L., J. Tankovic, and J.C. Petit. (2004). CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist 10: 191-196. 15383161
Durrett, T.P., W. Gassmann, and E.E. Rogers. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144: 197-205. 17351051
Eijkelkamp, B.A., K.A. Hassan, I.T. Paulsen, and M.H. Brown. (2011). Development of a high-throughput cloning strategy for characterization of Acinetobacter baumannii drug transporter proteins. J. Mol. Microbiol. Biotechnol. 20: 211-219. 21778766
Fay, A. and J. Dworkin. (2009). Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. J. Bacteriol. 191: 6020-6028. 19666716
Fehlner-Gardiner, C.C. and M.A. Valvano. (2002). Cloning and characterization of the Burkholderia vietnamiensis norM gene encoding a multi-drug efflux protein. FEMS Microbiol. Lett. 215: 279-283. 12399047
Franklin, K., E.J. Lingohr, C. Yoshida, M. Anjum, L. Bodrossy, C.G. Clark, A.M. Kropinski, and M.A. Karmali. (2011). Rapid genoserotyping tool for classification of Salmonella serovars. J Clin Microbiol 49: 2954-2965. 21697324
Gee, C.L., K.G. Papavinasasundaram, S.R. Blair, C.E. Baer, A.M. Falick, D.S. King, J.E. Griffin, H. Venghatakrishnan, A. Zukauskas, J.R. Wei, R.K. Dhiman, D.C. Crick, E.J. Rubin, C.M. Sassetti, and T. Alber. (2012). A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5: ra7. 22275220
Green, L.S. and E.E. Rogers. (2004). FRD3 controls iron localization in Arabidopsis. Plant Physiol. 136: 2523-2531. 15310833
Hayashi, M., K. Tabata, M. Yagasaki, and Y. Yonetani. (2010). Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli. FEMS Microbiol. Lett. 304: 12-19. 20067529
He, G.X., T. Kuroda, T. Mima, Y. Morita, T. Mizushima, and T. Tsuchiya. (2004). An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol. 186: 262-265. 14679249
He, X., P. Szewczyk, A. Karyakin, M. Evin, W.X. Hong, Q. Zhang, and G. Chang. (2010). Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467: 991-994. 20861838
Helenius, J., D.T.W. Ng, C.L. Marolda, P. Walter, M.A. Valvano, and M. Aebi. (2002). Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415: 447. 11807558
Hiasa, M., T. Matsumoto, T. Komatsu, H. Omote, and Y. Moriyama. (2007). Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter. Am. J. Physiol. Cell Physiol. 293: C1437-1444. 17715386
Hong, Y., M.M. Cunneen, and P.R. Reeves. (2012). The Wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity. Mol. Microbiol. 84: 620-630. 22497246
Huang, J. and M. Schell. (1995). Molecular characterization of the eps gene cluster of Pseudomonas solanacearum and its transcriptional regulation at a single promoter. Mol. Microbiol. 16: 977-989. 7476194
Huda, M.N., Y. Morita, T. Kurodo, T. Mizushima, and T. Tsuchiya. (2001). Na+-driven multidrug efflux pump VcmA from Vibrio cholera non-01, a non-halophidic bacterium. FEMS Microbiol. Lett. 203: 235-239. 11583854
Hvorup, R.N., B. Winnen, A. Chang, Y. Jiang, X.-F. Zhou, and M.H. Saier, Jr. (2002). The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) flippase superfamily. European J. Biochem. 148: 3760-3762. 12603313
Inoue, A., Y. Murata, H. Takahashi, N. Tsuji, S. Fujisaki, and J. Kato. (2008). Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J. Bacteriol. 190: 7298-7301. 18708495
Islam, S.T. and J.S. Lam. (2012). Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol. [Epub: Ahead of Print] 23016929
Kaatz, G.W., C.E. DeMarco, and S.M. Seo. (2006). MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein. Antimicrob. Agents Chemother. 50: 1276-1281. 16569840
Kobara, A., M. Hiasa, T. Matsumoto, M. Otsuka, H. Omote, and Y. Moriyama. (2008). A novel variant of mouse MATE-1 H+/organic cation antiporter with a long hydrophobic tail. Arch Biochem Biophys 469: 195-199. 17983590
Kuroda, T. and T. Tsuchiya. (2009). Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. 1794: 763-768. 19100867
Kutsukake, K., T. Okada, T. Yokoseki, and T. Iino. (1994). Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene 143: 49-54. 8200538
Lefaucheur, L., J. Le Dividich, J. Mourot, G. Monin, P. Ecolan, and D. Krauss. (1991). Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J Anim Sci 69: 2844-2854. 1832143
Li, L., Z. He, G.K. Pandey, T. Tsuchiya, and S. Luan. (2002). Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J. Biol. Chem. 277: 5360-5368. 11739388
Long, F., C. Rouquette-Loughlin, W.M. Shafer, and E.W. Yu. (2008). Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob. Agents Chemother. 52: 3052-3060. 18591276
Lu, M., J. Symersky, M. Radchenko, A. Koide, Y. Guo, R. Nie, and S. Koide. (2013). Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc. Natl. Acad. Sci. USA 110: 2099-2104. 23341609
Lu, M., M. Radchenko, J. Symersky, R. Nie, and Y. Guo. (2013). Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat Struct Mol Biol 20: 1310-1317. 24141706
Marolda, C.L., B. Li, M. Lung, M. Yang, A. Hanuszkiewicz, A.R. Rosales, and M.A. Valvano. (2010). Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J. Bacteriol. 192: 6160-6171. 20870764
Marolda, C.L., L.D. Tatar, C. Alaimo, M. Aebi, and M.A. Valvano. (2006). Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen. J. Bacteriol. 188: 5124-5135. 16816184
Matsumoto, T., T. Kanamoto, M. Otsuka, H. Omote, and Y. Moriyama. (2008). Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am. J. Physiol. Cell Physiol. 294: C1074-1078. 18305230
McAleese, F., P. Petersen, A. Ruzin, P.M. Dunman, E. Murphy, S.J. Projan, and P.A. Bradford. (2005). A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob. Agents Chemother. 49: 1865-1871. 15855508
McAnulty, M.J. and T.K. Wood. (2014). YeeO from Escherichia coli exports flavins. Bioengineered 5: 386-392. 25482085
Mohamed, Y.F. and M.A. Valvano. (2014). A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology 24: 564-576. 24688094
Morita, M., N. Shitan, K. Sawada, M.C. Van Montagu, D. Inzé, H. Rischer, A. Goossens, K.M. Oksman-Caldentey, Y. Moriyama, and K. Yazaki. (2009). Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl. Acad. Sci. USA 106: 2447-2452. 19168636
Morita, Y., A. Kataoka, S. Shiota, T. Mizushima, and T. Tsuchiya. (2000). NorM of Vibrio parahaemolyticus is a Na+-driven multidrug efflux pump. J. Bacteriol. 182: 6694-6697. 11073914
Morita, Y., K. Kodama, S. Shiota, T. Mine, A. Kataoka, T. Mizushima, and T. Tsuchiya. (1998). NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42: 1778-1782. 9661020
Müller, F., J. König, H. Glaeser, I. Schmidt, O. Zolk, M.F. Fromm, and R. Maas. (2011). Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob. Agents Chemother. 55: 3091-3098. 21518836
Nishino, K. and A. Yamaguchi. (2001). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812. 11566977
Nürnberg, P., H. Thiele, D. Chandler, W. Höhne, M.L. Cunningham, H. Ritter, G. Leschik, K. Uhlmann, C. Mischung, K. Harrop, J. Goldblatt, Z.U. Borochowitz, D. Kotzot, F. Westermann, S. Mundlos, H.S. Braun, N. Laing, and S. Tinschert. (2001). Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat. Genet. 28: 37-41. 11326272
Ohta, K.Y., K. Inoue, Y. Hayashi, and H. Yuasa. (2006). Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos 34: 1868-1874. 16928787
Ormazabal, V., F.A. Zuñiga, E. Escobar, C. Aylwin, A. Salas-Burgos, A. Godoy, A.M. Reyes, J.C. Vera, and C.I. Rivas. (2010). Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization. J. Biol. Chem. 285: 36471-36485. 20843809
Paulsen, I.T., A.M. Beness, and M.H. Saier, Jr. (1997). Computer-based analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria. Microbiology 143: 2685-2699. 9274022
Rodríguez-Beltrán, J., A. Rodríguez-Rojas, J.R. Guelfo, A. Couce, and J. Blázquez. (2012). The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One 7: e34791. 22523558
Roschzttardtz, H., M. Séguéla-Arnaud, J.F. Briat, G. Vert, and C. Curie. (2011). The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23: 2725-2737. 21742986
Rouquette-Loughlin, C., S.A. Dunham, M. Kuhn, J.T. Balthazar, and W.M. Shafer. (2003). The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J. Bacteriol. 185: 1101-1106. 12533487
Rudnick, P.A., T. Arcondéguy, C.K. Kennedy, and D. Kahn. (2001). glnD and mviN are genes of an essential operon in Sinorhizobium meliloti. J. Bacteriol. 183: 2682-2685. 11274131
Ruiz, N. (2008). Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. USA 105: 15553-15557. 18832143
Sham, L.T., E.K. Butler, M.D. Lebar, D. Kahne, T.G. Bernhardt, and N. Ruiz. (2014). Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345: 220-222. 25013077
Soldo, B., V. Lazarevic, M. Pagni, and D. Karamata. (1999). Teichuronic acid operon of Bacillus subtilis 168. Molec. Microbiol. 31: 795-805. 10048024
Su, X.Z., J. Chen, T. Mizushima, T. Kuroda, and T. Tsuchiya. (2005). AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother. 49: 4362-4364. 16189122
Takanashi, K., K. Yokosho, K. Saeki, A. Sugiyama, S. Sato, S. Tabata, J.F. Ma, and K. Yazaki. (2013). LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus. Plant Cell Physiol. 54: 585-594. 23385147
Tanihara, Y., S. Masuda, T. Sato, T. Katsura, O. Ogawa, and K. Inui. (2007). Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol 74: 359-371. 17509534
Tocci, N., F. Iannelli, A. Bidossi, M.L. Ciusa, F. Decorosi, C. Viti, G. Pozzi, S. Ricci, and M.R. Oggioni. (2013). Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrob. Agents Chemother. 57: 248-253. 23114782
Vanni, S., P. Campomanes, M. Marcia, and U. Rothlisberger. (2012). Ion binding and internal hydration in the multidrug resistance secondary active transporter NorM investigated by molecular dynamics simulations. Biochemistry 51: 1281-1287. 22295886
Vasseur P., C. Soscia, R. Voulhoux, and A. Filloux. (2007). PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport. Biochimie. 89(8): 903-915. 17524545
Vasudevan, P., J. McElligott, C. Attkisson, M. Betteken, and D.L. Popham. (2009). Homologues of the Bacillus subtilis SpoVB protein are involved in cell wall metabolism. J. Bacteriol. 191: 6012-6019. 19648239
Vincent, C., P. Doublet, C. Grangeasse, E. Vaganay, A.J. Cozzone, and B. Duclos. (1999). Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J. Bacteriol. 181: 3472-3477. 10348860
Whitfield, C. and I.S. Roberts. (1999). Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31: 1307-1319. 10200953
Yang, S., C.R. Lopez, and E.L. Zechiedrich. (2006). Quorum sensing and multidrug transporters in Escherichia coli. Proc. Natl. Acad. Sci. USA 103: 2386-2391. 16467145
Yonezawa, A., S. Masuda, S. Yokoo, T. Katsura, and K. Inui. (2006). Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319: 879-886. 16914559
Young, K.D. (2014). Microbiology. A flipping cell wall ferry. Science 345: 139-140. 25013047
Zhang, X., X. He, J. Baker, F. Tama, G. Chang, and S.H. Wright. (2012). Twelve transmembrane helices form the functional core of mammalian multidrug and toxin extruder 1 (MATE1). J. Biol. Chem. [Epub: Ahead of Print] 22722930