TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
2.A.66.1:  The Multi Antimicrobial Extrusion (MATE) Family
*2.A.66.1.1









Drug:Na+ antiporter (norfloxacin, ethidium, kanamycin, ciprofloxin, streptomycin efflux pump), NorM.

Bacteria
Proteobacteria
NorM of Vibrio parahaemolyticus (O82855)
*2.A.66.1.2









Drug:Na+ antiporter, VcmA (exports norfloxacin, ciprofloxacin, ofloxacin, daunomycin, doxorubicin, streptomycin, kanamycin, ethidium, 4',6'-diamidino-2-phenylindole, Hoechst 33342 and acriflavin). The 3-d x-ray structure (3.65Å resolution) is available (He et al., 2010). Ion binding and internal hydration have been studied by molecular dynamics simulations (Vanni et al., 2012).  NorM simultaneously couples drug export to the sodium-motive force and the proton-motive force. Residues involved and protein regions that play important roles in Na+ or H+ binding have been identified (Jin et al. 2014).

Bacteria
Proteobacteria
VcmA (NorM) of Vibrio cholerae non-01
*2.A.66.1.3









Multidrug-resistance efflux pump, NorM (MdtK, NorE or YdhE) (Nishino and Yamaguchi 2001). Exports chloramphenicol, norfloxacin, enoxacin, phosphomycin, doxorubicin, trimethoprim, ethidium, deoxycholate, etc (Long et al., 2008). May also export signals for cell-cell communication (Yang et al., 2006).

Bacteria
Proteobacteria
NorM (YdhE) of E. coli
*2.A.66.1.4









DNA damage-inducible protein F, DinF.  Protects against oxidative stress and bile salts, possibly by pumping relevant compounds out of the cytoplasm (Rodríguez-Beltrán et al. 2012).

Bacteria
Proteobacteria
DinF of E. coli
*2.A.66.1.5









Ethionine resistance protein, ERC1
Eukaryota
Fungi
ERC1 (YHR032w) of Saccharomyces cerevisiae
*2.A.66.1.6









Drug (norfloxacin, ciprofoxacin, ethidium, tetramethylammonium, pyrrolidinone, polyvinylpyrrolidone) resistance pump, Alf5.  Note:  A. thaliana has 56 MATE transporters (Takanashi et al. 2013).

Eukaryota
Viridiplantae
Alf5 of Arabidopsis thaliana
*2.A.66.1.7









Cationic drug (4',6'-diamidino-2-phenylindole (DAPI), tetraphenylphosphonium (TPP), acriflavin, ethidium):Na+ antiporter, VmrA
Bacteria
Proteobacteria
VmrA of Vibrio parahaemolyticus
*2.A.66.1.8









Plasma membrane efflux pump, AtDTX1, for plant alkaloids, drugs (e.g., norfloxacin), antibiotics and Cd2+ (Li et al. 2002). 

Eukaryota
Viridiplantae
AtDTX1 of Arabidopsis thaliana
*2.A.66.1.9









Drug (norfloxacin, polymyxin B) resistance efflux pump, NorM
Bacteria
Proteobacteria
NorM of Burkholderia vietnamiensis
*2.A.66.1.10









Na -dependent cationic drug (ethidium, acriflavine, 2-N-methyl ellipticinium, berberine, norfloxacin, ciprofloxacin, rhodamine 6G, crystal violet, doxorubicin, novobiocin, enoxacin, and tetraphenylphosphonium chloride) efflux pump, NorM (Long et al. 2008).  3-d structures of the N. gonorrheae NorM transporter (96% identical to the N. miningitidis protein) have been solved complexed with three different substrates in a multidrug cavity and Cs (4HUN; Lu et al. 2013).  Lu et al. an identified an uncommon cation-π interaction in the Na+-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, they observed a potential rearrangement of at least two transmembrane helices upon Na+-induced drug export. They suggested that Na+ triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids.  However, see 2.A.66.1.32 where the opposite was concluded for a homologue that functions by drug:H+ antiport.

Bacteria
Proteobacteria
NorM of Neisseria meningitidis
*2.A.66.1.11









The Enhanced Disease Susceptibility Protein (EDS5), also called the Salicylate Induction Deficient (Sid1) protein; a possible chloroplast salicylate transporter (S. Heck, personal communication)
Eukaryota
Viridiplantae
EDS5 of Arabidopsis thaliana chloroplasts
*2.A.66.1.12









Drug:H+ antiporter (benzalkonium chloride, fluoroquinolone, ethidium bromide, acriflavin, tetraphenylphosphonium chloride efflux pump), PmpM (He et al., 2004)
Bacteria
Proteobacteria
PmpM of Pseudomonas aeruginosa (Q9I3Y3)
*2.A.66.1.13









Drug (monovalent and divalent biocides; fluoroquinolones including norfloxacin and ciprofloxacin) efflux pump, SvrA (MepA) (Kaatz et al., 2006). Also exports tigecycline (McAleese et al., 2005).

Bacteria
Firmicutes
SvrA of Staphylococcus aureus (Q2G140)
*2.A.66.1.14









Human MATE1 electroneutral organocation:H antiporter (transports tetraethylammonium, TEA and cimetidine as well as cisplatin and oxaliplatin) (Yonezawa et al., 2006). MATE1 also exports chloroquine across the luminal membrane (Müller et al., 2011). It has an established 13 TMS topology with the "extra" TMS in an extracellular C-terminal region that is not essential for function (Zhang et al., 2012).  Also exports 1-methyl-4-phenylpyridinium (MPP), N-methylnicotinamide (NMN), metformin, creatinine, guanidine, procainamide, topotecan, estrone sulfate, acyclovir, ganciclovir and the zwitterionic cephalosporin, cephalexin and cephradin. Seems to also play a role in the uptake of oxaliplatin (a platinum anticancer agent). Able to transport paraquat (PQ or N,N-dimethyl-4-4'-bipiridinium); a widely used herbicid. Responsible for the secretion of cationic drugs across the brush border membranes (Tanihara et al. 2007).

Eukaryota
Metazoa
SLC47A1 of Homo sapiens
*2.A.66.1.15









Electroneutral Multidrug & Toxin Extrusion-1 organic cation:H+ antiporter (MATE-1). Exports tetraethylammonium (TEA) and cimetidine, and probably other organic cations, such as 1-methyl-4-phenylpyridinium, amiloride, imipramine, and quinidine (Ohta et al., 2006).
Eukaryota
Metazoa
MATE-1 of Rattus norvegicus (Q5I0E9)
*2.A.66.1.16









Electroneutral organic cation:H+ antiporter MATE2 (Hiasa et al., 2007). 50% identical to MATE1; 2.A.66.1.15.
Eukaryota
Metazoa
MATE2 of Mus musculus (Q3V050)
*2.A.66.1.17









MATE efflux pump, MatE

Eukaryota
Intramacronucleata
MatE of Tetrahymena thermophila
*2.A.66.1.18









MATE1b (mediates tetraethylammonium (TEA) uptake with properties similar to that of mMATE1; localized in renal brush border membranes (Kobara et al., 2008)).
Eukaryota
Metazoa
MATE1b of Mus musculus (Q8K0H1)
*2.A.66.1.19









JAT1 (transports nicotine and anabasine, and other alkaloids, such as hyoscyamine and berberine, but not flavonoids) (Morita et al., 2009).
Eukaryota
Viridiplantae
JAT1 of Nicotiana tabacum (B7ZGMO)
*2.A.66.1.20









Multidrug and Toxin Extrusion Protein 2, MATE-2 (catalyzes drug:H+ antiport; broad specificity, low affinity (50-3000 μM) for organic cationic and anionic compounds (Tanihara et al., 2007)).

Eukaryota
Metazoa
SLC47A2 of Homo sapiens
*2.A.66.1.21









H+-coupled multidrug efflux pump, AbeM (most like 2.A.66.1.2, NorM of Vibrio cholerae) (Su et al., 2005). Exports norfloxacin, ciprofloxacin, DAPI, acriflavin, Hoechst 33342, daunorubicin, doxorubicin, and ethidium (Su et al., 2005).

Bacteria
Proteobacteria
AbeM of Acinetobacter baumannii (Q5FAM9)
*2.A.66.1.22









Quinolone:H+ antiporter, EmmdR. Substates include benzalkonium chloride, norfloxacin, ciprofloxacin, levofloxacin, ethidium bromide, acriflavine, rhodamine 6G and trimethoprim.

Bacteria
Proteobacteria
EmmdR of Enterobacter cloacae (D5CJ69)
*2.A.66.1.23









MDR efflux pump, YeeO (NorA) (81.8% identical to 2.A.66.1.22). Transports dipeptides (see 2.A.1.2.55) (Hayashi et al., 2010).  Also exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). However, significant amounts of flavins were trapped intracellularly when YeeO was produced. Wild-type E. coli secretes 3 flavins (riboflavin, FMN, and FAD), so it must have additional flavin transporters (McAnulty and Wood 2014).

Bacteria
Proteobacteria
YeeO of E. coli (P76352)
*2.A.66.1.24









FRD3 efflux pump for citrate; involved in iron homeostasis. Localized to the pericycle and vascular cylinder of roots; loads citrate into xylem tissues facilitating iron transport from the roots to the shoots; null mutants are sterile (Green and Rogers 2004; Roschzttardtz et al., 2011; Green and Rogers 2004; Roschzttardtz et al., 2011; Durrett et al., 2007).

Eukaryota
Viridiplantae
FRD3 of Arabidopsis thaliana (Q9SFB0)
*2.A.66.1.25









Probable multidrug resistance protein YoeA

Bacteria
Firmicutes
YoeA of Bacillus subtilis
*2.A.66.1.26









Uncharacterized transporter MJ0709
Archaea
Euryarchaeota
MJ0709 of Methanocaldococcus jannaschii
*2.A.66.1.27









Probable multidrug resistance protein NorM (Multidrug-efflux transporter)
Bacteria
Proteobacteria
NorM of Caulobacter crescentus
*2.A.66.1.28









Probable multidrug resistance protein NorM (Multidrug-efflux transporter)
Bacteria
Thermotogae
NorM of Thermotoga maritima
*2.A.66.1.29









MATE exporter protein

Bacteria
Proteobacteria
MATE exporter protein of Myxococcus xanthus
*2.A.66.1.30









Ciprofloxacin export permease, AbeM2

Bacteria
Proteobacteria
AbeM2 of Acinetobacter baumannii
*2.A.66.1.31









Ciprofloxacin efflux pump, AbeM4 (Eijkelkamp et al. 2011).

Bacteria
Proteobacteria
AbeM4 of Acinetobacter baumannii
*2.A.66.1.32









Multidrug:proton antiporter of the DinF subfamily.  The structure has been solved to 3.2 Å resolution with and without the substrate, Rhodamine 6 G.  The 12 TMSs show asymmetry with a membrane-embedded substrate-binding chamber.  Direct competition between the H+ and the substrate during transport was suggested (Lu et al. 2013).  However, the opposite was suggested for a sodium antiporter (see TC# 2.A.66.1.10).

Bacteria
Firmicutes
DinF-like MDR pump of Bacillus halodurans
*2.A.66.1.33









MDR efflux pump for quinolones (moxifloxacin, ciprofloxacin and levofloxacin) of 456 aas, DinF (Tocci et al. 2013).

Bacteria
Firmicutes
DinF of Streptococcus pneumoniae
*2.A.66.1.34









MATE MDR exporter of 411 aas, SP2065 (Tocci et al. 2013).  Exports novobiocin.

Bacteria
Firmicutes
SP2065 of Streptococcus pneumoniae
*2.A.66.1.35









Citrate-specific transporter of 538 aas, MATE1.  Necessary for iron supply to the nodule infection zone (Takanashi et al. 2013).

Eukaryota
Viridiplantae
MATE1 of Lotus japonicus
*2.A.66.1.36









Multidrug exporter, DinF, of 457 aas.  Exports various toxic compounds, including antibiotics, phytoalexins, and detergents. Mutants are less virulent on the tomato plant than the wild-type strain (Brown et al. 2007).

Bacteria
Proteobacteria
DinF of Ralstonia solanacearum (Pseudomonas solanacearum)
*2.A.66.1.37









Multidrug resistance protein, CdeA of 441 aas.  Exports ethidium bromide, fluoroquinolone and acriflavin but had no effect on susceptibility to the following antibiotics: norfloxacin, ciprofloxacin, gentamicin, erythromycin, tetracyclin, and chloramphenicol (Dridi et al. 2004).  May be a Na+ antiporter.

Bacteria
Firmicutes
*2.A.66.1.38









Homologue of Mte1 of Tricholomp vaccinum of 588 aas which mediates detoxification of xenobiotics and metal ions such as Cu, Li, Al, and Ni, as well as secondary plant metabolites (Schlunk et al. 2015).

Eukaryota
Fungi
Mte1 homologue of Moniliophthora roreri (Cocoa frosty pod rot fungus) (Crinipellis roreri)
*2.A.66.1.39









Jasmonate-inducible alkaloid transporter-2, JAT2.Transports nicotine and other alkaloids into the tonoplast vacuole for sequestration (Chen et al. 2015; Shitan et al. 2014).

JAT2 of Nicotiana tabacum
*2.A.66.1.40









Putative MDR or polysaccharide exporter of 514 aas and 12 TMSs

Bacteria
Spirochaetes
Exporter of Treponema succinifaciens
*2.A.66.1.41









Na+-coupled multidrug efflux pump, PdrM (Hashimoto et al. 2013). Confers resistance to several antibacterial agents including norfloxacin, acriflavine, and 4',6-diamidino-2-phenylindole (DAPI).

Bacteria
Firmicutes
PdrM of Streptococcus pneumoniae
*2.A.66.1.42









Paralytic shellfish toxin (PST; including saxitoxin (STX)) exporter, SxtM, of 464 aas (Soto-Liebe et al. 2013). These toxins, which block Na+ channels, are produced by cyanobacteria and dinoflagellates, and >30 such natural alkaloids are known (Soto-Liebe et al. 2012).

Bacteria
Cyanobacteria
SxtM of Cylindrospermopsis raciborskii
*2.A.66.1.43









MATE1 of 563 aas and 12 TMSs.  Involved in aluminum resistance (Maron et al. 2013).

Eukaryota
Viridiplantae
MATE1 of Zea mays (Maize)
*2.A.66.1.44









Transparent Testa 12 (TT12), also called Protein DETOXIFICATION, is a valuolar transporter of proanthocyanidins (PAs). It transports these compounds from the cytoplasm into the vacuolar lumen (Gao et al. 2015).
Eukaryota
Viridiplantae
TT12 of Gossypium hirsutum (Upland cotton) (Gossypium mexicanum)
*2.A.66.1.45









Damage inducible multidrug resistance protein F, DinF of 455 aas and 12 TMSs. An x-ray structure is available (Radchenko et al. 2015).

Archaea
Euryarchaeota
DinF of Pyrococcus furiosus
*2.A.66.1.46









Saxitoxin, STX, exporter, SxtF; also exports fluoroquinolone, suggesting it is an MDR pump (Ongley et al. 2016).

Bacteria
Cyanobacteria
SxtF of Cylindrospermopsis raciborskii
*2.A.66.1.47









Saxitoxin, STX, exporter, SxtM; also exports fluoroquinolone, suggesting it is an MDR pump (Ongley et al. 2016).

Bacteria
Cyanobacteria
SxtM of Aphanizomenon sp. NH-5 (Anabaena circinalis)
*2.A.66.1.48









MATE transporter. ClbM, of 479 aas and 12 TMSs, ClbM.  Exports precolibactin, a genotoxin made by a polyketide complex in E. coli, that generates double strand breaks in the DNA (Mousa et al. 2016). The 3-d structure is available (PDB# 4Z3N).

Bacteria
Proteobacteria
ClbM of E. coli
2.A.66.2:  The Polysaccharide Transport (PST) Family
*2.A.66.2.1









Lipopolysaccharide (possibly the O-antigen side chain intermediate) exporter
Bacteria
Proteobacteria
RfbX1 of E. coli
*2.A.66.2.2









Probable succinoglycan exporter
Bacteria
Proteobacteria
ExoT of Rhizobium meliloti
*2.A.66.2.3









Undecaprenol-pyrophosphate O-antigen flippase WzxE

Bacteria
Proteobacteria
WzxE of E. coli (P0AAA7)
*2.A.66.2.4









Probable acetan exporter
Bacteria
Proteobacteria
AceE of Acetobacter xylinus
*2.A.66.2.5









Capsular polysaccharide exporter
Bacteria
Firmicutes
CapF of Staphylococcus aureus
*2.A.66.2.6









Teichuronic acid exporter, TuaB (YvhB)
Bacteria
Firmicutes
TuaB of Bacillus subtilis
*2.A.66.2.7









Lipopolysaccharide (colanic acid) exporter, WzxC
Bacteria
Proteobacteria
WzxC of E. coli
*2.A.66.2.8









Exopolysaccharide (Amylovoran) exporter, AmsL

Bacteria
Proteobacteria
AmsL of Erwinia amylovora
*2.A.66.2.10









The O-antigent transporter homologue, Mth347
Archaea
Euryarchaeota
Mth347 of Methanobacterium thermoautotrophicum(O26447)
*2.A.66.2.11









Exopolysaccharide exporter, EpsE (Huang and Schell, 1995)
Bacteria
Proteobacteria
EpsE of Ralstonia solanacearum (Q45411)
*2.A.66.2.12









Isoprenoid lipid sugar glycan flippase, Wzx (note: Wzx forms a complex with Wzy and Wzz for assembly of periplasmic O-antigen) (Marolda et al., 2006). Wzx has a 12 TMS topology (Cunneen and Reeves, 2008). WzyE (450aas; 12 TMSs; TC#9.B.128.1.1; B614D1) is called the enterobacterial common antigen (ECA) polysaccharide chain elongation polymerase (Marolda et al., 2006). The structure of Wzz has been determined by cryoEM (Collins et al. 2017).

Bacteria
Proteobacteria
Wzx of E. coli (Q1L811)
*2.A.66.2.13









Unknown PST protein
Bacteria
Proteobacteria
Unknown PST protein of Alteromonadales bacterium (A0XZ57)
*2.A.66.2.14









The 14 TMS SpoVB protein (possibly catalyzes lipid-linked oligosaccharide transport across the cytoplasmic membrane; required for proper cell wall biosynthesis) (Vasudevan et al., 2009).

Bacteria
Firmicutes
The SpoVB protein of Bacillus subtilis (Q00758)
*2.A.66.2.15









Anionic O-antigen (undecaprenyl pyrophosphate-linked anionic O-Ag) subunit flippase, Wzx. Translocates from the inner to the outer leaflets of the inner membrane.  The topology has been studied (Ormazabal et al. 2010).

Bacteria
Proteobacteria
Wzx of Pseudomonas aeruginosa (G3XD19)
*2.A.66.2.16









Capsular polysaccharide exporter, CpsU (428aas; 12 TMSs).

Bacteria
Firmicutes
CpsU of Streptococcus thermophilus (Q8KUK6)
*2.A.66.2.17









Sporulation protein YkvU

Bacteria
Firmicutes
YkvU of Bacillus subtilis
*2.A.66.2.18









O-antigen transmembrane translocase, Wzx (Franklin et al. 2011). In S. enterica groups B, D2 and E, Wzx translocation exhibits specificity for the repeat-unit structure, as variants with single sugar differences are translocated with lower efficiency, and little long-chain O antigen is produced. It appears that Wzx translocases are specific for their O antigen for normal levels of translocation (Hong et al. 2012).

Bacteria
Proteobacteria
Wzx of Salmonella enterica subsp. enterica
*2.A.66.2.19









O-antigen transmembrane translocase, Wzx (Franklin et al. 2011).  For S. enterica groups B, D2 and E, Wzx translocation exhibits specificity for the repeat-unit structure, as variants with single sugar differences are translocated with lower efficiency, and little long-chain O antigen is produced. It appears that Wzx translocases are specific for their O antigen for normal levels of translocation (Hong et al. 2012).

Bacteria
Proteobacteria
Wzx of Salmonella typhimurium subsp. houtenae
*2.A.66.2.20









PST family homologue of 14 TMSs

Bacteria
Chlamydiae/Verrucomicrobia group
Hypothetical protein of Parachlamydia acanthamoebae
*2.A.66.2.21









Putative polysaccharide transporter

Bacteria
Spirochaetes
Putative polysaccharide transporter of Leptospira interrogans
*2.A.66.2.22









Choline-derivatized teichoic acid exporter (flippase), TacF of495 aas.  TacF is responsible for the choline dependent growth phenotype (Damjanovic et al. 2007).

Bacteria
Firmicutes
TacF of Streptococcus pneumoniae
*2.A.66.2.23









Xanthan precursor exporter of 499 aas and 14 TMSs, GumJ (Bianco et al. 2014).

Bacteria
Proteobacteria
GumJ of Xanthomonas campestris
*2.A.66.2.24









Putative polysaccharide exporter of 471 aas and 14 TMSs

Bacteria
Proteobacteria
UP of E. coli
*2.A.66.2.25









Polysaccharide export protein of 572 aas and 12 TMSs.

Bacteria
Candidatus Beckwithbacteria
PS exporter of Candidatus Beckwithbacteria bacterium
2.A.66.3:  The Oligosaccharidyl-lipid Flippase (OLF) Family
*2.A.66.3.1









The OLF (Rft1 protein) of Saccharomyces cerevisiae.  May play a role in phospholipid flipping from the inner leaflet of the plasma membrane to the outer leaflet (Chauhan et al. 2016).

Eukaryota
Fungi
Rft1 of Saccharomyces cerevisiae
*2.A.66.3.2









Endoplasmic reticular RFT1 homologue
Eukaryota
Metazoa
RFT1 homologue of Homo sapiens (Q96AA3)
*2.A.66.3.3









Nuclear division RFT1 homologue
Eukaryota
Viridiplantae
RFT1 homologue of Arabidopsis arenosa (Q6V5B3)
*2.A.66.3.4









Hypothetical protein; RFT1 homologue
Eukaryota
Intramacronucleata
RFT1 homologue of Paramecium tetraurelia (A0D5K0)
2.A.66.4:  The Mouse Virulence Factor (MVF) Family
*2.A.66.4.1









The mouse virulence factor, MviN. (May flip the Lipid II peptidoglycan precursor from the cytoplasmic side of the inner membrane to the periplasmic surface) (Vasudevan et al., 2009). MviN, a putative lipid flippase (Fay and Dworkin, 2009).  In E. coli, MviN is an essential protein which when defective results in the accumulation of polyprenyl diphosphate-N-acetylmuramic acid-(pentapeptide)-N-acetyl-glucosamine.  This may be the peptidoglycan intermediated exported via MviN (Inoue et al. 2008).  It is essential for the growth of several bacteria.

Bacteria
Proteobacteria
MviN of Salmonella typhimurium (P37169)
*2.A.66.4.2









Putative virulence factor, MviN (21% identity with 2.A.66.4.1)
Bacteria
Spirochaetes
MviN of Borrelia garinii (Q65ZW3)
*2.A.66.4.3









Peptidoglycan biosynthesis protein MurJ (Ruiz 2008). A 3-d structural model showed a solvent-exposed cavity within the plane of the membrane (Butler et al. 2013). MurJ has 14 TMSs, and specific charged residues localized in the central cavity are essential for function. This structural homology model suggests that MurJ functions as an essential transporter in PG biosynthesis (Butler et al. 2013). Based on an in vivo assay, MurJ is a flippase for the lipid-linked cell wall precursor, polyisoprenoid-linked disaccharide-peptapeptide (Sham et al. 2014).  There is controversy about the role of this porter and FtsW/RodA which on the basis of an in vitro assay, were thought to be flippases for the same intermediate (Young 2014).

Bacteria
Proteobacteria
MurJ of Escherichia coli
*2.A.66.4.4









MviN.  Essential for peptidoglycan biosynthesis (Gee et al. 2012).

Bacteria
Actinobacteria
MviN of Mycobacterium tuberculosis
*2.A.66.4.5









MviN; LuxO regulated for induction during the early logarithmic and stationary phase of growth (Cao et al. 2010).

Bacteria
Proteobacteria
MviN of Vibrio alginolyticus
*2.A.66.4.6









Uncharacterized protein

Bacteria
Proteobacteria
UP of E. coli
*2.A.66.4.7









Probable peptidoglycan-lipid II flippase, MurJ or MviN; essential for cell wall synthesis and viability (Mohamed and Valvano 2014).

Bacteria
Proteobacteria
MurJ of Burkholderia cenocepacia
*2.A.66.4.8









MurJ (MviV) of 475 aas and 14 TMSs. Kuk et al. 2016 presented a crystal structure of MurJ from Thermosipho africanus in an inward-facing conformation at 2.0-A resolution. A hydrophobic groove is formed by two C-terminal transmembrane helices, which leads into a large central cavity that is mostly cationic. Their results suggest that alternating access is important for MurJ function, which may be applicable to other MOP superfamily transporters (Kuk et al. 2016).

Bacteria
Thermotogae
MurJ of Thermosipho africanus
2.A.66.5:  The Agrocin 84 Antibiotic Exporter (AgnG) Family
*2.A.66.5.1









The agrocin 84 exporter, AgnG
Bacteria
Proteobacteria
AgnG of Agrobacterium tumefaciens (Q676G9)
*2.A.66.5.2









AgnG homologue 1 (433aas; 12TMSs; (2)6 )
Bacteria
Proteobacteria
AgnG homologue 1 of Nitrococcus mobilis (A4BUA1)
*2.A.66.5.3









AgnG homologue 2 (448aas; 12TMSs; (2)6.  Probable polysaccharide exporter.

Bacteria
Cyanobacteria
AgnG homologue 2 of Lyngbya sp. PCC8106 (A0YL48)
2.A.66.6:  The Putative Exopolysaccharide Exporter (EPS-E) Family
*2.A.66.6.1









Putative exopolysaccharide transporter, PelG (456 aas, 12TMSs) (COG4267) (Vasseur et al., 2007)
Bacteria
Proteobacteria
PelG of Pseudomonas aeruginosa (Q02PM3)
*2.A.66.6.2









Fusion protein (986 aas): Glycosyl transferase group 1 (residues 1-550); putative transporter (flippase) (residue 551-986; 12(6+6) TMSs)
Bacteria
Proteobacteria
Fusion protein of Ralstonia solanacearum (EAP70965)
2.A.66.7:  Putative O-Unit Flippase (OUF) Family
*2.A.66.7.1









Putative O-unit flippase (OUF1)
Bacteria
Proteobacteria
OUF1 of Pseudomonas fluorescens (Q4K6F5)
2.A.66.8:  Unknown MOP-1 (U-MOP1) Family (Most closely related to the OLF Family (2.A.66.3))
*2.A.66.8.1









Hypothetical protein (598aas; 12-14TMSs)
Eukaryota
Kinetoplastida
Hypothetical protein of Trypanosoma brucei (Q383B3)
*2.A.66.8.2









Hypothetical protein (729aas; 14TMSs ?)
Eukaryota
Kinetoplastida
Hypothetical protein of Leishmania infantum (A4I3X2)
2.A.66.9:  The Progressive Ankylosis (Ank) Family
*2.A.66.9.1









The progressive ankylosis (ANK) protein (AnkH) gives rise to craniometaphyseal bone dysplasia in man. This 12 TMS protein transports pyrophosphate and is expressed in the primary ciliary/basal body complex of kidney and bone tissues (Nürnberg et al., 2001; Carr et al. 2009). It is critical for the regulation of pyrophosphate, and gain of function ANK mutations are associated with calcium pyrophosphate deposition disease (Mitton-Fitzgerald et al. 2016).

 

Eukaryota
Metazoa
AnkH of Homo sapiens (Q9HCJ1)
*2.A.66.9.2









Hypothetical protein, Pcar_0400

Bacteria
Proteobacteria
Pcar_0400 of Pelobacter carbinolicus (Q3A7I4)
*2.A.66.9.3









Ank family member
Bacteria
Proteobacteria
Ank protein of Desulfuromonas acetoxidans (Q1K211)
2.A.66.10:  LPS Precursor Flippase (LPS-F) Family
*2.A.66.10.1









Wzx isoprenoid-linked O-antigen precursor glycan translocase.  A 12 TMS topology with N- and C-termini in the cytoplasm has been estabilshed, and functionally important residues have been identified (Marolda et al. 2010).  A substrate:proton antiport mechanism has been established (Islam et al. 2013).

Bacteria
Proteobacteria
  Wzx of E. coli O157:H7 str 1125
2.A.66.11:  Uncharacterized MOP-11 (U-MOP11) Family

 

*2.A.66.11.1









Uncharacterized protein

Bacteria
Actinobacteria
Uncharacterized protein of Streptomyces coelicolor
*2.A.66.11.2









Uncharacterized protein

Bacteria
Proteobacteria
Uncharacterized protein of Beggiatoa alba
2.A.66.12:  Uncharacterized MOP-12 (U-MOP12) Family

 

*2.A.66.12.1









Uncharacterized MOP superfamily member of 506 aas and 14 TMSs

Bacteria
Proteobacteria
U-MOP family 12 member-1
*2.A.66.12.2









Uncharacterized MOP superfamily member of 1049 aas and 14 or 15 TMSs

Bacteria
Bacteroidetes/Chlorobi group
U-MOP family 12 member-2
*2.A.66.12.3









Uncharacterized MOP superfamily member of 489 aas and 14 TMSs

Archaea
Euryarchaeota
U-MOP family 12 member-3
*2.A.66.12.4









Uncharacterized MOP superfamily member of 487 aas and 14 TMSs

Archaea
Euryarchaeota
U-MOP superfamily protein
*2.A.66.12.5









Uncharacterized MOP superfamily of 488 aas and 14 TMSs

Archaea
Euryarchaeota
U-MOP superfamily member
*2.A.66.12.6









Putative polysaccharide exporter of 449 aas, YghQ.

Bacteria
Proteobacteria
YghQ of E. coli
*2.A.66.12.7









The Succinoglycan Biosynthesis Transporter homologue, Mth342
Archaea
Euryarchaeota
Mth342 of Methanobacterium thermoautotrophicum (O26442)
*2.A.66.12.8









Putative Wzx flippase of 499 aas and 14 TMSs (Hug et al. 2016).

Bacteria
Candidatus Peregrinibacteria
Wzx of Candidatus Peribacter riflensis