TCDB is operated by the Saier Lab Bioinformatics Group

3.A.3 The P-type ATPase (P-ATPase) Superfamily

Nearly all of the members of this superfamily, found in bacteria, archaea and eukaryotes, catalyze cation uptake and/or efflux driven by ATP hydrolysis. Clustering on the phylogenetic tree is usually in accordance with specificity for the transported ion(s). Many of these protein complexes are multisubunit with a large subunit serving the primary ATPase and ion translocation functions. In eukaryotes, they are present in the plasma membranes or endoplasmic reticular membranes. In prokaryotes, they are localized to the cytoplasmic membranes. Gastric H+-translocating ATPases (ouabain-insensitive) comprise a subgroup of the larger and more diverse Na+/K+ ATPase family (ouabain-sensitive) (Family 1). The ouabain-binding pocket can be functionally reconstituted in the gastric H+,K+ ATPase by substitution of only seven residues (Qiu et al., 2005). Ca2+ ATPases of prokaryotes and eukaryotes comprise a very diverse family (Family 2) including in eukaryotes plasma membrane, golgi, and sarcoplasmic reticular types. Sarcoplasmic reticular Ca2+ ATPases (SERCA) in brown adipose tissue can uncouple ATP hydrolysis from Ca2+ transport and be thermogenic (de Meis, 2003). H+-translocating P-type ATPases of plants and fungi comprise their own family (Family 3). Plant P-ATPases have been reviewed by Wdowikowska and Klobus, (2011). Distinct bacterial enzymes specific for K+ (Family 7; only in prokaryotes) or Mg2+ (Family 4, mostly in prokaryotes; uptake), Cu2+, Ag+, Zn2+, Co2+, Pb2+, Ni2+, and/or Cd2+ (Family 6; efflux) and Cu2+ or Cu+ (Family 5; uptake or efflux, depending on the system) have been characterized, and each of these types of enzymes comprises a distinct family. Cu2+ or Cu+-translocating ATPases from bacteria, archaea and animals cluster together, and at least some of these also transport Ag+. The Cu+/Ag+ (Family 5 and heavy metal (Family 6)) ATPases have an 8 TMS topology (Mandal et al., 2002). A cys-pro-cys motif in CopA of E. coli (TC #3.A.3.5.5) is essential for Cu+/Ag+ efflux and phosphoenzyme formation (Fan and Rosen, 2002).

P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. Thever & Saier (2009) analyzed the fully sequenced genomes of 26 eukaryotes including animals, plants, fungi and unicellular eukaryotes for P-type ATPases. They reported the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. Family 9 Na+- or K+-ATPases can be found in fungi, plants bryophytes and protozoa (Rodríguez-Navarro and Benito, 2010).

Chan et al. (2010) analyzed P-type ATPases in all major prokaryotic phyla for which complete genome sequence data were available and compared the results with those for eukaryotic P-type ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold) while type II ATPases (specific for Na+,K+, H+ Ca2+, Mg2+ and phospholipids) predominate in eukaryotes (approx. twofold). Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K+ uptake ATPases (type III) and all ten prokaryotic functionally uncharacterized P-type ATPase (FUPA) familes), while others are restricted to eukaryotes (e.g. phospholipid flippases and all 13 eukaryotic FUPA families) (Thever and Saier, 2009). Horizontal gene transfer has occurred frequently among bacteria and archaea, which have similar distributions of these enzymes, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial phyla (e.g. Bacteroidetes, Flavobacteria and Fusobacteria), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e., Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Several pseudogene-encoded nonfunctional ATPases were identified. Genome minimalization led to preferential loss of P-type ATPase genes. Chan et al. (2010) suggested that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies (Chan et al., 2010).

Many eukaryotic P-type ATPases are monomeric or homodimeric enzymes of the catalytic subunit that hydrolyzes ATP. They contain the aspartyl phosphorylation site and catalyzes ion transport. The Na+,K+-ATPases, the Ca2+-ATPases and the (fungal) H+-ATPases of higher organisms exhibit 10 transmembrane α helical spanners (TMSs), some of them highly tilted. Additional subunits that appear to lack catalytic activity may be present in the ATPase complex. For example, the 10 TMS catalytic α-subunit of the Na+,K+-ATPase of animals is tightly complexed to the 1 TMS β-subunit and the tissue-specific, regulatory, 1 TMS γ-subunit. The β-subunit, which may influence the activity of the α-subunit, probably functions to facilitate proper insertion of the α-subunit into the membrane, to allow proper targeting to a subcellular membrane site in post-translational processing, and to stabilize the catalytic subunit. The β-subunit can therefore be considered to be an auxiliary protein of the Na+,K+-ATPase catalytic subunit. The γ-subunit of the Na+,K+-ATPase has been reported to influence kinetic parameters and is homologous to a family of pore-forming peptides, the peptides of the phospholemman family (TC #1.A.27), and the C-subunits of V-type ATPases (TC #3.A.2). This γ-subunit is induced under stress conditions and modulates Na+,K+-ATPase activity and cell growth (Wetzel et al., 2004). The Na+, K+-ATPase can serve as a steroid hormone receptor (Schoner, 2002). Several other P-type ATPases also depend on small proteolipids, the functions of which are uncertain.

The annular lipid-protein stoichiometry in a native pig kidney Na+/K+ -ATPase preparation has been studied by [125I]TID-PC/16 labeling, giving results that indicated that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in the E2 state, i.e., the conformational transitions are accompanied by changes in the numbers of annular lipids but not in the affinity of these lipids for the protein (Mangialavori et al. 2011). The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.

The stoichiometries of transport are sometimes known and complex. In the case of the Na+,K+-ATPases, 3 Na+ are exchanged for 2 K+ per ATP molecule hydrolyzed. The gastric H+-translocating ATPases replace H+ for K+ but with an H+/K+ stoichiometry of 2:2. Thus, although these two enzymes are ~65% identical, the Na+,K+-ATPases are electrogenic while the H+,K+-ATPases are electroneutral. Gastric H+, K+-ATPase transports 2 moles of H+ together with two H2O (two H3O+) per mole of ATP hydrolyzed in isolated hog gastric vesicles. Protons are charge-transferred from the cytosolic side to H2O in sites 2 and 1, the H2O coming from the cytosol, and H3O+ in these sites are transported into the lumen during the conformational transition from E1P to E2P (Morii et al., 2008). Ca2+ ATPases may catalyze Ca2+/K+ or Ca2+/H+ antiport. A single organism often possesses multiple isoforms of these enzymes.

Considerable evidence is available showing that animals have Cl- translocating, Cl- stimulating P-type ATPases. Although extensive biochemical data are available, the protein sequence of any one such Cl- ATPase has not yet been determined (Gerencser, 1993; Inagaki et al., 1996; Zeng et al., 1999). Evidence for mammalian iron-inducible, iron-transporting ATPases is also available (Baranano et al., 2000). Finally bacterial Na+-transporting P-type ATPases probably exist (Ueno et al., 2000). Evidence for a Na+-P-type ATPase has been obtained for the halotolerant cyanobacterium, Aphanothece halophytica (Wiangon et al., 2007). Thus the breadth of substrates transported by P-type ATPases is likely to be much greater than currently recognized.

The Na+,K+-ATPase acts as a signal transducer and transcription activator, modulating cell growth, apoptosis, and cell motility. A prominent binding motif linking the Na+,K+-ATPase to intracellular signaling effectors is the N-terminal tail of the Na+,K+-ATPase catalytic α-subunit which binds directly to the N-terminus of the inositol 1,4,5-trisphosphate receptor (Zhang et al., 2006). Three amino acyl residues, LKK, conserved in most species and most α-isoforms, are essential for binding. In wild-type cells, low concentrations of ouabain trigger low frequency calcium oscillations that activate NF-κB and protect from apoptosis. Thus, the LKK motif binds the inositol 1,4,5-trisphosphate receptor and triggers an anti-apoptotic calcium signal. However, the N-terminal hydrophilic region in front of the first TMS does not interact with the transported cation (Na+, K+, or Ca2+) although this first TMS does (Einholm et al., 2007). Of the P-type ATPases, only Na+, K+-ATPases are receptors that respond to endogenous cardiotonic steroids such as ouabain and marinobufagenin (steroid 'hormones') which regulate Na+ excretion and blood pressure (Liu and Xie, 2010).

P-type ATPases provide a polar transmembrane pathway, to which access is strictly controlled by coupled gates that are constrained to open alternately, thereby enabling thermodynamically uphill ion transport. Reyes and Gadsby (2006) have examined the ion pathway through the N+, K+-ATPase, a representative P-type pump, after uncoupling its extra- and intracellular gates with the marine toxin palytoxin. They found a wide outer vestibule penetrating deep into the Na+, K+-ATPase, where the pathway narrows and leads to a charge-selectivity filter. Acidic residues in this region, which are conserved to coordinate pumped ions, allow the approach of cations but exclude anions. Reversing the charge at just one of those positions converts the pathway from cation selective to anion selective. Cysteine scans from TM1 to TM6 in the Na+, K+-ATPase revealed a single unbroken cation pathway that traverses palytoxin-bound Na+,K+-pump-channels from one side of the membrane to the other (Takeuchi et al. 2008). This pathway comprises residues from TM1, TM2, TM4 and TM6, passes through ion-binding site II, and is probably conserved in structurally and evolutionarily related P-type pumps. Close structural homology among the catalytic subunits of Ca2+-, Na+, K+- and H+, K+-ATPases argues that their extracytosolic cation exchange pathways all share these physical characteristics (Reyes and Gadsby, 2006). The mechanistic details of type II ATPases, notably those for which 3-d structures are available (Na, K+-, gastri H+, K+-, Ca2+ and H+, K+-ATPase); TC Families 1,2 and 3, respectively, as well as prepared cation translocation pathways, have been discussed by Bublitz et al. (2010).

The X-ray crystal structure at 3.5 Å resolution of the pig renal Na+,K+-ATPase has been determined with two rubidium ions bound in an occluded state in the transmembrane part of the α-subunit (Morth et al., 2007). Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of the sarco(endo)plasmic reticulum. The β- and γ-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices αM7/αM10 and αM9, respectively. The γ-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the α-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.

The Na+,K+-ATPase can be transformed into an ion channel using pharmacological agents. Palytoxin (PTX), produced by soft coral of the genus Palythoa, binds to the ATPase with a Kd of 20 pM and creates a monovalent cation-selective channel with a single channel conductance of 10 pS (Rossini and Bigiani, 2011). The presence of external Na+ seems to be essential for channel activation (Wu et al., 2003). When the N-terminal 35 residues are removed from the ATPase, the toxin-activated channel does not exhibit a time-dependent inactivation gating at positive potentials as is characteristic of the wild-type protein. The truncated pump exhibits no electrogenic current, and the ion stoichiometry for active transport is altered. Addition of the synthetic peptide restores activity towards wild type. The N-terminal peptide therefore appears to act as an inactivation gate (similar to Shaker B channels of the VIC family (TC #1.A.1)). It may also play a critical role in determining the ion stoichiometry (Wu et al., 2003). Fluorometric studies indicate that under normal conditions, α- and β-subunits move towards each other during the E2 to E1 transition (Dempski et al., 2006).

The structures of the sarcoplasmic reticular Ca2+-ATPase have been solved at 2.6 Å resolution for the complex to which 2 Ca2+ are bound, and at 3.1 Å resolution for the complex lacking Ca2+ (Toyoshima et al., 2000; Toyoshima and Nomura, 2002). A total of eight different states of the Ca2+ -ATPase, representing the many steps in the reaction cycle, have been visualized by high resolution x-ray crystallography (Toyoshima et al., 2007; Toyoshima, 2008). The two Ca2+ are located side by side, surrounded by 4 transmembrane helices, two of which are unwound for efficient coordination geometry. There are 3 cytoplasmic domains, one, the central catalytic domain, bearing the phosphorylation site, a second bearing the adenosine nucleotide binding site, and a third of unknown function. The central domain has the same fold as haloacid dehydrogenases (Aravind et al., 1998; Stokes and Green, 2000). The Ca2+-free form shows large conformational differences from the Ca2+-bound form with the three cytoplasmic domains tightly associated to form a single headpiece and six of the ten TMSs largely rearranged. These latter rearrangements guarantee the release of external Ca2+ and create a pathway for entry of Ca2+ from the cytoplasm. ATPase activity and Ca2+ binding are cooperatively interdependent, but the two processes can be separated by mutations (Zhang et al., 2002).

Structures are available for both the E1 and E2 states of the Ca2+ ATPase showing that Ca2+ binding induces major changes in all three cytoplasmic domains relative to each other (Xu et al., 2002). Xu et al. proposed how Ca2+ binding induces conformational changes in TMS4 and 5 in the membrane domain (M) that in turn induce rotation of the phosphorylation domain (P). The nucleotide binding (N) and β-sheet (β) domains are highly mobile, with N flexibly linked to P, and β flexibly linked to M. Modeling of the fungal H+ ATPase, based on the structures of the Ca2+ pump, suggested a comparable 70º rotation of N relative to P to deliver ATP to the phosphorylation site (Kühlbrandt et al., 2002). One report suggests that this S.R. Ca2+ ATPase is homodimeric (Ushimaru and Fukushima, 2008).

Crystal structures (Gadsby, 2007) have shown that the conserved TGES loop of the Ca2+-ATPase is isolated in the Ca2E1 state but becomes inserted in the catalytic site in E2 states. Anthonisen et al. (2006) characterized the kinetics of the partial reaction steps of the transport cycle and the binding of the phosphoryl analogs BeF, AlF, MgF, and vanadate in mutants with alterations to the TGES residues. The data provide functional evidence supporting a role of Glu183 in activating the water molecule involved in the E2P → E2 dephosphorylation and suggest a direct participation of the side chains of the TGES loop in the control and facilitation of the insertion of the loop in the catalytic site. The interactions of the TGES loop furthermore seem to facilitate its disengagement from the catalytic site during the E2 → Ca2E1 transition.

Olesen et al. (2007) have described functional studies and three new crystal structures of the rabbit skeletal muscle Ca2+-ATPase. These represent the phosphoenzyme intermediates associated with (1) Ca2+ binding, (2) Ca2+ translocation and (3) dephosphorylation. They are based on complexes with a functional ATP analogue, beryllium fluoride or aluminium fluoride. The structures complete the cycle of nucleotide binding and cation transport of Ca2+-ATPase. Phosphorylation of the enzyme triggers a conformational change that leads to opening of a luminal exit pathway defined by the transmembrane segments M1 through M6. M1-M6 represent the canonical membrane domain of P-type pumps. Ca2+ release is promoted by translocation of the M4 helix, exposing Glu 309, Glu 771 and Asn 796 to the lumen. The mechanism explains how P-type ATPases are able to form the steep electrochemical gradients required for key functions in eukaryotic cells (Olesen et al., 2007). Moller et al. (2010) reveiwed structural studies of various conformers of the Ca2+ ATPase, (SERCA1a), present in skeletal muscle. The structures corresponding to the various intermediary states. They have been obtained after stabilization with structural analogues of ATP or metal fluorides as mimicks of inorganic phosphate. It is possible to provide a detailed structural description of both ATP hydrolysis and Ca2+ transport through the membrane.

The structure of a P-type proton pump was determined by X-ray crystallography by Pederson et al., (2007). Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane. The structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.

As in other P-type ATPases, metal binding to transmembrane metal-binding sites (TM-MBS) in Cu+-ATPases is required for enzyme phosphorylation and subsequent transport. However, Cu+ does not access Cu+-ATPases in a free (hydrated) form but is bound to a chaperone protein. The delivery of Cu+ by Archaeoglobus fulgidus Cu+ chaperone CopZ to the corresponding Cu+-ATPase, CopA, has been studied (González-Guerrero and Argüello, 2008). CopZ interacted with and delivered the metal to the N-terminal metal binding domain(s) of CopA (MBDs). Cu+-loaded MBDs, acting as metal donors, were unable to activate CopA or a truncated CopA lacking MBDs. Conversely, Cu+-loaded CopZ activated the CopA ATPase and CopA constructs in which MBDs were rendered unable to bind Cu+. Furthermore, under nonturnover conditions, CopZ transferred Cu+ to the TM-MBS of a CopA lacking MBDs altogether. Thus, MBDs may serve a regulatory function without participating directly in metal transport, and the chaperone delivers Cu+ directly to transmembrane transport sites of Cu+-ATPases (González-Guerrero and Argüello, 2008). Wu et al (2008) have determined structures of two constructs of the Cu (CopA) pump from Archaeoglobus fulgidus by cryoelectron microscopy of tubular crystals, which revealed the overall architecture and domain organization of the molecule. They localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle and built a pseudoatomic model by fitting existing crystallographic structures into the cryoelectron microscopy maps for CopA. The results also similiarly suggested a Cu-dependent regulatory role for the MBD.

In the Archaeoglobus fulgidus CopA (TC# 3.A.3.5.7), invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu+ with high affinity in a trigonal planar geometry. The cytoplasmic Cu+ chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu+ is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieu. Transport studies have shown that most Cu+-ATPases drive cytoplasmic Cu+ efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu+-efflux pumps responsible for Cu+ tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.

Chintalapati et al. (2008) have characterized two copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. CtrA2 is activated by Ag+ and Cu+ and presumably transports reduced Cu+, while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 degrees C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at approximately 7 A resolution with density peaks indicating eight membrane-spanning alpha-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P(1B)-type ATPases (Chintalapati et al., 2008).

The 8TMS CadA of Listeria monocytogenes (Family 6) confirs resistance to cadmium. Residues in TMS6 (Cys354 and Cys356), TMS8 (Asp692) and TMS3 (Met149) may bind Cd2+ (Wu et al., 2006). However, the two cysteine residues in the CPC motif act at different steps: Cys354 is involved in Cd2+ binding while Cys356 is involved in Cd2+ occlusion. The two equivalent cysteines in the yeast Cu2+ ATPase may also act at different steps. The conserved Glu164 may be required for Cd2+ release. Possibly two Cd2+ are involved in the reaction cycle of CadA (Wu et al., 2006).  A hemerythrin-like two iron-binding domain in a P1B-type transport ATPase from Acidothermus cellulolyticus has been identified (Traverso et al., 2010).

The phospholipid translocating P-type ATPases (Family 8; TC #3.A.3.8) are found only in eukaryotes. They appear to function with β-subunits of about 400 aas with 2 TMSs. These have been functionally characterized from yeast and protozoans (TC #8.A.27; Perez-Victoria et al., 2006). These enzymes catalyze the ATP-dependent flipping of phospholipids and lysophospholipids from the outer leaflet of the cytoplasmic membrane to the inner leaflet. Residues defining phospholipid flippase substrate specificity have been identified (Baldridge and Graham, 2012). In the yeast Saccharomyces cerevisiae, Family 3.A.3.8 lipid flipping ATPases play a pivotal role in the biogenesis of intracellular transport vesicles, polarized protein transport and protein maturation.  However, in mammals, these ATPases act in concert with members of the CDC50 protein family, putative beta-subunits for these ATPases, and many function as part of the vesicle-generating machinery (Paulusma and Oude Elferink, 2010). Family 8 ATPases may exert their cellular functions by combining enzymatic phospholipid translocation activity with an enzyme-independent action. The latter can involve the timely recruitment of proteins involved in cellular signalling, vesicle coat assembly and cytoskeleton regulation (van der Velden et al., 2010). The beta-subunit, CDC50A, allows the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2 (Coleman and Molday, 2011).  Residues in phospholipid specificity have been identified (Baldridge and Graham 2012).

Detailed high resolution x-ray structures of heavy metal P1B-type ATPases were not available prior to 2011 when Gourdon et al. (2011) reported the structure of CopA, a Cu+-ATPase from Legionella pneumophile at 3.2 Å resolution. The results provided the first in depth description of a heavy metal-translocatin P1B-type ATPase. A three-stage copper transport pathway involves several well conserved residues. A P1B-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. An ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site is probable (Gourdon et al. 2011).

The generalized reaction for P-type ATPases is:

nMe1 (out) + mMe2 (in) + ATP → nMe1 (in) + mMe2 (out) + ADP + Pi.

This family belongs to the: P-type ATPase (P-ATPase) Superfamily.

References associated with 3.A.3 family:

Abe, K., K. Tani, T. Friedrich, and Y. Fujiyoshi. (2012). Cryo-EM structure of gastric H+,K+-ATPase with a single occupied cation-binding site. Proc. Natl. Acad. Sci. USA 109: 18401-18406. 23091039
Adle, D.J., D. Sinani, H. Kim, and J. Lee. (2007). A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae. J. Biol. Chem. 282: 947-955. 17107946
Ahn, W., M.G. Lee, K.H. Kim, and S. Muallem. (2003). Multiple effects of SERCA2b mutations associated with Darier's disease. J. Biol. Chem. 278: 20795-20801. 12670936
Anthonisen, A.N., J.D. Clausen, and J.P. Andersen. (2006). Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 281: 31572-31582. 16893884
Aravind, L., M.Y. Galperin, and E.V. Koonin. (1998). The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem. Sci. 23: 127-129. 9584613
Auer, M., G.A. Scarborough, and W. Kühlbrandt. (1999). Surface crystallisation of the plasma membrane H+-ATPase on a carbon support film for electron crystallography. J. Mol. Biol. 287: 961-968. 10222203
Autry, J.M., J.E. Rubin, S.D. Pietrini, D.L. Winters, S.L. Robia, and D.D. Thomas. (2011). Oligomeric interactions of sarcolipin and the Ca-ATPase. J. Biol. Chem. 286: 31697-31706. 21737843
Axelsen, K.B. and M.G. Palmgren. (1998). Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46: 84-101. 9419228
Baekgaard, L., L. Luoni, M.I. De Michelis, and M.G. Palmgren. (2006). The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J. Biol. Chem. 281: 1058-1065. 16267044
Baekgaard, L., M.D. Mikkelsen, D.M. Sørensen, J.N. Hegelund, D.P. Persson, R.F. Mills, Z. Yang, S. Husted, J.P. Andersen, M.J. Buch-Pedersen, J.K. Schjoerring, L.E. Williams, and M.G. Palmgren. (2010). A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J. Biol. Chem. 285: 31243-31252. 20650903
Baldridge, R.D. and T.R. Graham. (2012). Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proc. Natl. Acad. Sci. USA 109: E290-298. 22308393
Baldridge, R.D., P. Xu, and T.R. Graham. (2013). Type IV P-type ATPases distinguish mono- versus di-acyl phosphatidylserine using a cytofacial exit gate in the membrane domain. J. Biol. Chem. [Epub: Ahead of Print] 23709217
Banuelos, M.A. and A. Rodríguez-Navarro. (1998). P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J. Biol. Chem. 273: 1640-1646. 9430707
Baranano, D.E., H. Wolosker, B. Bae, R. K. Barrow, S.H. Snyder, and C.D. Ferris. (2000). A mammalian iron ATPase induced by iron. J. Biol. Chem. 275: 15166-15173. 10809751
Barnes, N., R. Tsivkovskii, N. Tsivkovskaia, and S. Lutsenko. (2005). The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J. Biol. Chem. 280: 9640-9645. 15634671
Barry, A.N., A. Otoikhian, S. Bhatt, U. Shinde, R. Tsivkovskii, N.J. Blackburn, and S. Lutsenko. (2011). The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites. J. Biol. Chem. 286: 26585-26594. 21646353
Beard, S.J., R. Hashim, J. Membrillo-Hernández, M.N. Hughes, and R.K. Poole. (1997). Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25: 883-891. 9364914
Benito B., Garciadeblas B., Perez-Martin J. and Rodriguez-Navarro A. (2009). Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis. Eukaryot Cell. 8(6):821-9. 19363061
Benito, B., B. Garciadeblás, and A. Rodríguez-Navarro. (2002). Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148: 933-941. 11932440
Benito, B., B. Garciadeblás, and A. Rodríguez-Navarro. (2000). Molecular cloning of the calcium and sodium ATPases in Neurospora crassa. Mol. Microbiol. 35: 1079-1088. 10712689
Bertini, I. and A. Rosato. (2008). Menkes disease. Cell Mol Life Sci 65(1): 89-91. 17989919
Bock, K.W., D. Honys, J.M. Ward, S. Padmanaban, E.P. Nawrocki, K.D. Hirschi, D. Twell, and H. Sze. (2006). Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 140: 1151-1168. 16607029
Bonza, M.C., H. Martin, M. Kang, G. Lewis, T. Greiner, S. Giacometti, J.L. Van Etten, M.I. De Michelis, G. Thiel, and A. Moroni. (2010). A functional calcium-transporting ATPase encoded by chlorella viruses. J Gen Virol 91: 2620-2629. 20573858
Bowman, B.J., S. Abreu, E. Margolles-Clark, M. Draskovic, and E.J. Bowman. (2011). Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. Eukaryot. Cell. 10: 654-661. 21335528
Braiterman, L., L. Nyasae, F. Leves, and A.L. Hubbard. (2011). Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking. Am. J. Physiol. Gastrointest Liver Physiol 301: G69-81. 21454443
Bramkamp, M., K. Altendorf, and J.C. Greie. (2007) Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review). Mol. Membr. Biol. 24: 375-386. 17710642
Bryde, S., H. Hennrich, P.M. Verhulst, P.F. Devaux, G. Lenoir, and J.C. Holthuis. (2010). CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J. Biol. Chem. 285: 40562-40572. 20961850
Bublitz, M., H. Poulsen, J.P. Morth, and P. Nissen. (2010). In and out of the cation pumps: P-type ATPase structure revisited. Curr. Opin. Struct. Biol. 20: 431-439. 20634056
Cairo, E.R., T. Friedrich, H.G. Swarts, N.V. Knoers, R.J. Bindels, L.A. Monnens, P.H. Willems, J.J. De Pont, and J.B. Koenderink. (2008). Impaired routing of wild type FXYD2 after oligomerisation with FXYD2-G41R might explain the dominant nature of renal hypomagnesemia. Biochim. Biophys. Acta. 1778: 398-404. 17980699
Carpinelli, M.R., M.G. Manning, B.T. Kile, and A.B. Rachel. (2013). Two ENU-induced alleles of Atp2b2 cause deafness in mice. PLoS One 8: e67479. 23826306
Catty, P., A.D. d’Exaerde, and A. Goffeau. (1997). The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett. 409: 325-332. 9224683
Chan, H., V. Babayan, E. Blyumin, C. Gandhi, K. Hak, D. Harake, K. Kumar, P. Lee, T.T. Li, H.Y. Liu, T.C. Lo, C.J. Meyer, S. Stanford, K.S. Zamora, and M.H. Saier, Jr. (2010). The p-type ATPase superfamily. J. Mol. Microbiol. Biotechnol. 19: 5-104. 20962537
Chen, H.Y., R.D. Roer, and R.D. Watson. (2013). Molecular cloning of a plasma membrane Ca²⁺ ATPase (PMCA) from Y-organs of the blue crab (Callinectes sapidus), and determination of spatial and temporal patterns of PMCA gene expression. Gene 522: 8-17. 23545309
Chesi, A., A. Kilaru, X. Fang, A.A. Cooper, and A.D. Gitler. (2012). The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast. PLoS One 7: e34178. 22457822
Chintalapati, S., R. Al Kurdi, A.C. van Scheltinga, and W. Kühlbrandt. (2008). Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J. Mol. Biol. 378: 581-595. 18374940
Cohen, Y., M. Megyeri, O.C. Chen, G. Condomitti, I. Riezman, U. Loizides-Mangold, A. Abdul-Sada, N. Rimon, H. Riezman, F.M. Platt, A.H. Futerman, and M. Schuldiner. (2013). The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 8: e85519. 24392018
Coleman JA., Kwok MC. and Molday RS. (2009). Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem. 284(47):32670-9. 19778899
Coleman, J.A. and R.S. Molday. (2011). Critical role of the β-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. J. Biol. Chem. 286: 17205-17216. 21454556
Cronin S.R., R. Rao, R.Y. Hampton. (2002). Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J. Cell. Biol. 157: 1017-1028. 12058017
Da'dara, A.A., Z. Faghiri, G. Krautz-Peterson, R. Bhardwaj, and P.J. Skelly. (2013). Schistosome Na,K-ATPase as a therapeutic target. Trans R Soc Trop Med Hyg 107: 74-82. 23222953
de Meis, L. (2003). Brown adipose tissue Ca2+-ATPase. Uncoupled ATP hydrolysis and thermogenic activity. J. Biol. Chem. 278: 41856-41861. 12912988
de Meis, L., A.P. Arruda, R.M. da Costa, and M. Benchimol. (2006). Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+. J. Biol. Chem. 281: 16384-16390. 16608844
Dehay, B., M. Martinez-Vicente, A. Ramirez, C. Perier, C. Klein, M. Vila, and E. Bezard. (2012). Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8: 1389-1391. 22885599
Dempski, R.E., K. Hartung, T. Friedrich, and E. Bamberg. (2006). Fluorometric measurements of intermolecular distances between the α- and β-subunits of the Na+/K+-ATPase. J. Biol. Chem. 281: 36338-36346. 16980302
Ding, J., Z. Wu, B.P. Crider, Y. Ma, X. Li, C. Slaughter, L. Gong, and X. Xie. (2000). Identification and functional expression of four isoforms of ATPase II, the putative aminophospholipid translocase. Effect of isoform variation on the ATPase activity and phospholipid specificity. J. Biol. Chem. 275: 23378-23386. 10801890
Doğanli, C., H.C. Beck, A.B. Ribera, C. Oxvig, and K. Lykke-Hartmann. (2013). α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. J. Biol. Chem. 288: 8862-8874. 23400780
Docampo, R., S.N. Moreno, and H. Plattner. (2013). Intracellular calcium channels in protozoa. Eur J Pharmacol. [Epub: Ahead of Print] 24291099
Eide, D.J. (1998). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18: 441-469. 9706232
Einholm, A.P., J.P. Andersen, and B. Vilsen. (2007). Roles of transmembrane segment M1 of Na(+), K(+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot. J. Bioenerg. Biomembr. 39(5-6):357-66.
Ekberg, K., B.P. Pedersen, D.M. Sørensen, A.K. Nielsen, B. Veierskov, P. Nissen, M.G. Palmgren, and M.J. Buch-Pedersen. (2010). Structural identification of cation binding pockets in the plasma membrane proton pump. Proc. Natl. Acad. Sci. USA 107: 21400-21405. 21098259
Ekberg, K., M.G. Palmgren, B. Veierskov, and M.J. Buch-Pedersen. (2010). A Novel Mechanism of P-type ATPase Autoinhibition Involving Both Termini of the Protein. J. Biol. Chem. 285: 7344-7350. 20068040
Elvington, S.M., F. Bu, and J.W. Nichols. (2005). Fluorescent, acyl chain-labeled phosphatidylcholine analogs reveal novel transport pathways across the plasma membrane of yeast. J. Biol. Chem. 280: 40957-40964. 16204231
Emre Onat, O., S. Gulsuner, K. Bilguvar, A. Nazli Basak, H. Topaloglu, M. Tan, U. Tan, M. Gunel, and T. Ozcelik. (2012). Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion. Eur J Hum Genet. [Epub: Ahead of Print] 22892528
Eren, E., Kennedy, D.C., Maroney, M.J., and Arguello, J.M. (2006). A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J. Biol. Chem. 281: 33881-33891. 16973620
Ettema, T.J., A.B. Brinkman, P.P. Lamers, N.G. Kornet, W.M. de Vos, and J. van der Oost. (2006). Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology 152: 1969-1979. 16804172
Fagan, M.J. and M.H. Saier, Jr. (1994). P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J. Mol. Evol. 38: 57-99. 8151716
Fan, B. and B.P. Rosen. (2002). Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. 277: 46987-46992. 12351646
Furune, T., K. Hashimoto, and J. Ishiguro. (2008). Characterization of a fission yeast P(5)-type ATPase homologue that is essential for Ca2+/Mn(2+ )homeostasis in the absence of P(2)-type ATPases. Genes Genet Syst 83: 373-381. 19168988
Gaballa, A., and J.D. Helmann. (2002). A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol. Microbiol. 45: 997-1005. 12180919
Gassel, M., T. Möllenkamp, W. Puppe, and K. Altendorf. (1999). The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J. Biol. Chem. 274: 37901-7. 10608856
Geering, K. (1991). The functional role of the β-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS Lett. 285: 189-193. 1649770
Geering, K. (2000). Topogenic motifs in P-type ATPases. J. Memb. Biol. 174: 181-190. 10758171
Gerencser, G.A. (1993). A novel P-type Cl- stimulated ATPase: phosphorylation and specificity. Biochem. Biophys. Res. Commun. 196: 1188-1194. 8250876
Giacomello, M., A. De Mario, C. Scarlatti, S. Primerano, and E. Carafoli. (2013). Plasma membrane calcium ATPases and related disorders. Int J Biochem. Cell Biol. 45: 753-762. 23041476
Godic, A., M. Strazisar, A. Zupan, B. Korosec, A. Kansky, and D. Glavac. (2010). Darier disease in Slovenia: spectrum of ATP2A2 mutations and relation to patients' phenotypes. Eur J Dermatol 20: 271-275. 20423818
Gomès, E., M.K. Jakobsen, K.B. Axelsen, M. Geisler, and M.G. Palmgren. (2000). Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12: 2441-2454. 11148289
González-Guerrero, M. and J.M. Argüello. (2008). Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc. Natl. Acad. Sci. USA 105: 5992-5997. 18417453
González-Guerrero, M., D. Raimunda, X. Cheng, and J.M. Argüello. (2010). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol. Microbiol. 78: 1246-1258. 21091508
Gorski, P.A., C.A. Trieber, E. Larivière, M. Schuermans, F. Wuytack, H.S. Young, and P. Vangheluwe. (2012). Transmembrane helix 11 is a genuine regulator of the endoplasmic reticulum Ca2+ pump and acts as a functional parallel of β-subunit on α-Na+,K+-ATPase. J. Biol. Chem. 287: 19876-19885. 22528494
Gorski, P.A., J.P. Glaves, P. Vangheluwe, and H.S. Young. (2013). Sarco/endoplasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J. Biol. Chem. [Epub: Ahead of Print] 23362265
Gourdon, P., O. Sitsel, J. Lykkegaard Karlsen, L. Birk Møller, and P. Nissen. (2012). Structural models of the human copper P-type ATPases ATP7A and ATP7B. Biol Chem 393: 205-216. 23029640
Gourdon, P., X.Y. Liu, T. Skjørringe, J.P. Morth, L.B. Møller, B.P. Pedersen, and P. Nissen. (2011). Crystal structure of a copper-transporting PIB-type ATPase. Nature 475: 59-64. 21716286
Greie, J.C., and K. Altendorf. (2007). The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features. J. Bioenerg. Biomembr. 39: 397-402. 18058005
Gupta, A., K. Matsui, J.-F. Lo, and S. Silver. (1999). Molecular basis for resistance to silver cations in Salmonella. Nature Med. 5: 183-188. 9930866
Hao, Z., S. Chen, and D.B. Wilson. (1999). Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl. Environ. Microbiol. 65: 4746-4752. 10543781
Harper J.F., B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze. (1998). A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J. Biol. Chem. 273: 1099-1106. 9422775
Hasman, H., (2005). The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis. Microbiol. 151: 3019-3025. 16151212
Hassani, B.K., C. Astier, W. Nitschke, and S. Ouchane. (2010). CtpA, a copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes. J. Biol. Chem. 285: 19330-19337. 20363758
Hauck, C. and W.H. Frishman. (2012). Systemic hypertension: the roles of salt, vascular Na+/K+ ATPase and the endogenous glycosides, ouabain and marinobufagenin. Cardiol Rev 20: 130-138. 22183064
Haupt, M., M. Bramkamp, M. Coles, H. Kessler, and K. Altendorf. (2005). Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB. J. Mol. Microbiol. Biotechnol. 10: 120-131. 16645309
Heitkamp, T., R. Kalinowski, B. Böttcher, M. Börsch, K. Altendorf, and J.C. Greie. (2008). K(+)-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer. Biochemistry 47: 3564-75. 18298081
Herrmann, L., D. Schwan, R. Garner, H.L.T. Mobley, R. Haas, K.P. Schäfer, and K. Melchers. (1999). Heliocobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Mol. Microbiol. 33: 524-536. 10417643
Hložková, K., J. Suman, H. Strnad, T. Ruml, V. Paces, and P. Kotrba. (2013). Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8. Res. Microbiol. 164: 1009-1018. 24125695
Holmgren, M., J. Wagg, F. Bezanilla, R.F. Rakowski, P. De Weer, and D.C. Gadsby. (2000). Three distinct and sequential steps in the release of sodium ions by the Na+/K+-ATPase. Nature 403: 898. 10706288
Hou, Z. and B. Mitra. (2003). The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J. Biol. Chem. 278: 28455-28461. 12746428
Hou, Z.-J., S. Narindrasorasak, B. Bhushan, B. Sarkar, and B. Mitra. (2001). Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. J. Biol. Chem. 276: 40858-40863. 11527979
Hu, G. and J.W. Kronstad. (2010). A putative P-type ATPase, Apt1, is involved in stress tolerance and virulence in Cryptococcus neoformans. Eukaryot. Cell. 9: 74-83. 19949048
Huang L., T. Berkelman, A.E. Franklin, N.E. Hoffman. (1993). Characterization of a gene encoding a Ca2+-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci U.S.A. 90: 10066-10070. 8234257
Inagaki, C., M. Hara, and X.T. Zeng. (1996). A Cl- pump in rat brain neurons. J. Exp. Zool. 275: 262-268. 8759922
Irzik, K., J. Pfrötzschner, T. Goss, F. Ahnert, M. Haupt, and J.C. Greie. (2011). The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone. FEBS J. 278: 3041-3053. 21711450
Justesen, B.H., R.W. Hansen, H.J. Martens, L. Theorin, M.G. Palmgren, K.L. Martinez, T.G. Pomorski, and A.T. Fuglsang. (2013). Active plasma membrane P-type H+-ATPase reconstituted into nanodiscs is a monomer. J. Biol. Chem. 288: 26419-26429. 23836891
Kamrul Huda, K.M., S. Yadav, M.S. Akhter Banu, D.K. Trivedi, and N. Tuteja. (2013). Genome-wide analysis of plant-type II Ca2+ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. Plant Physiol. Biochem 65: 32-47. 23416494
Karjalainen E.L., K. Hauser, A. Barth. (2007). Proton paths in the sarcoplasmic reticulum Ca2+-ATPase. Biochim Biophys Acta. 1767: 1310-1318. 17904096
Kim, H., T. Kim, B.C. Jeong, I.T. Cho, D. Han, N. Takegahara, T. Negishi-Koga, H. Takayanagi, J.H. Lee, J.Y. Sul, V. Prasad, S.H. Lee, and Y. Choi. (2013). Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. Cell Metab 17: 249-260. 23395171
Kopec, W., B. Loubet, H. Poulsen, and H. Khandelia. (2014). Molecular Mechanism of Na+,K+-ATPase Malfunction in Mutations Characteristic of Adrenal Hypertension. Biochemistry. [Epub: Ahead of Print] 24428543
Kraev A., N. Kraev, E. Carafoli. (1999). Identification and functional expression of the plasma membrane calcium ATPase gene family from Caenorhabditis elegans. J. Biol. Chem. 274: 4254-4258. 9933625
Kristensen, M. and C. Juel. (2010). Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types. J. Membr. Biol. 234: 35-45. 20177668
Kühlbrandt, W., J. Zeelen, and J. Dietrich. (2002). Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 297: 1692-1696. 12169656
Kühlbrandt, W., M. Auer, and G.A. Scarborough. (1998). Structure of the P-type ATPases. Curr. Opin. Struc. Biol. 8: 510-516.
Lauer Júnior, C.M., D. Bonatto, A.A. Mielniczki-Pereira, A.Z. Schuch, J.F. Dias, M.L. Yoneama, and J.A. Pêgas Henriques. (2008). The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion. FEMS Microbiol. Lett. 285: 79-88. 18510555
Leedjärv, A., A. Ivask, and M. Virta. (2008). Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J. Bacteriol. 190: 2680-2689. 18065533
Lescasse, R., J. Grisvard, G. Fryd, A. Fleury-Aubusson, and A. Baroin-Tourancheau. (2005). Proposed function of the accumulation of plasma membrane-type Ca2+-ATPase mRNA in resting cysts of the ciliate Sterkiella histriomuscorum. Eukaryot. Cell. 4: 103-110. 15643066
Lewinson, O., A.T. Lee, and D.C. Rees. (2009). A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc. Natl. Acad. Sci. USA 106: 4677-4682. 19264958
Li, Z. and Z. Xie. (2009). The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 457: 635-644. 18283487
Liang F., K.W. Cunningham, J.F. Harper, H. Sze. (1997). ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. 9238019
Liu J. and Xie ZJ. (2010). The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta. 1802(12):1237-45. 20144708
Liu, T., H. Reyes-Caballero, C. Li, R.A. Scott, and D.P. Giedroc. (2007). Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA. Biochemistry 46: 11057-11068. 17824670
Liu, Y., S. Sitaraman, and A. Chang. (2006). Multiple degradation pathways for misfolded mutants of the yeast plasma membrane ATPase, Pma1. J. Biol. Chem. 281: 31457-31466. 16928681
Lopes da Fonseca, T., A. Correia, W. Hasselaar, H.C. van der Linde, R. Willemsen, and T.F. Outeiro. (2013). The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Brain Res Bull 90: 118-126. 23123961
López-Marqués, R.L., L.R. Poulsen, S. Hanisch, K. Meffert, M.J. Buch-Pedersen, M.K. Jakobsen, T.G. Pomorski, and M.G. Palmgren. (2010). Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. Mol. Biol. Cell 21: 791-801. 20053675
Lowe J., A. Vieyra, P. Catty, F. Guillain, E. Mintz, M. Cuillel. (2004). A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys-Pro-Cys cysteine. J. Biol. Chem. 279: 25986-25994. 15078884
Luo S., F.A. Ruiz, S.N. Moreno. (2005). The acidocalcisome Ca2+-ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol. Microbiol. 55: 1034-1045. 15686552
Luo, S., J. Fang, and R. Docampo. (2006). Molecular characterization of Trypanosoma brucei P-type H+-ATPases. J. Biol. Chem. 281: 21963-21973. 16757482
Lübben, M., J. Güldenhaupt, M. Zoltner, K. Deigweiher, P. Haebel, C. Urbanke, and A.J. Scheidig. (2007). Sulfate acts as phosphate analog on the monomeric catalytic fragment of the CPx-ATPase CopB from Sulfolobus solfataricus. J. Mol. Biol. 369: 368-385. 17434529
Lüttmann, D., R. Heermann, B. Zimmer, A. Hillmann, I.S. Rampp, K. Jung, and B. Görke. (2009). Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol. Microbiol. 72: 978-994. 19400808
MacLennan, D.H., W.J. Rice, and N.M. Green. (1997). The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272: 28815-28818. 9360942
Mahmmoud, Y.A. (2008a). Capsazepine, a synthetic vanilloid that converts the Na, K-ATPase to Na-ATPase. Proc. Natl. Acad. Sci. U.S.A. 105: 1757-1761. 18230728
Mahmmoud, Y.A. (2008b). Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump. J. Biol. Chem. 283: 21418-21426. 18539598
Mana-Capelli, S., A.K. Mandal, and J.M. Argüello. (2003). Archaeoglobus fultcidus CopB is a thermophilic Cu2+-ATPase. Functional role if its histidine-rich N-terminal metal binding domain. J. Biol. Chem. 278: 40534-40541. 12876283
Mandal, A.K., W.D. Cheung, and J.M. Argüello. (2002). Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fultcidus. J. Biol. Chem. 277: 7201-7208. 11756450
Mangialavori, I., M.R. Montes, R.C. Rossi, N.U. Fedosova, and J.P. Rossi. (2011). Dynamic lipid-protein stoichiometry on E1 and E2 conformations of the Na+/K+ -ATPase. FEBS Lett. 585: 1153-1157. 21419126
Maudoux, O., H. Batoko, C. Oecking, K. Gevaert, J. Vandekerckhove, M. Boutry, and P. Morsomme. (2000). A plant plasma membrane H+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J. Biol. Chem. 275: 17762-17770. 10748153
Mills R.F., M.L. Doherty, R.L. López-Marqués, T. Weimar, P. Dupree, M.G. Palmgren, J.K. Pittman, and L.E. Williams. (2008). ECA3, a golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol. 146: 116-128. 18024560
Miranda M., Pardo JP. and Petrov VV. (2011). Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H(+)-ATPase. Biochim Biophys Acta. 1808(7):1781-9. 21156155
Moniakis J., M.B. Coukell, A. Forer. (1995). Molecular cloning of an intracellular P-type ATPase from Dictyostelium that is up-regulated in calcium-adapted cells. J. Biol. Chem. 270: 28276-28281. 7499325
Moore, C.M., E.M. Hoey, A. Trudgett, and D.J. Timson. (2012). A plasma membrane Ca2+-ATPase (PMCA) from the liver fluke, Fasciola hepatica. Int J Parasitol 42: 851-858. 22819963
Moreno I., L. Norambuena, D. Maturana, M. Toro, C. Vergara, A. Orellana, A. Zurita-Silva, V.R. Ordenes. (2008). AtHMA1 Is a Thapsigargin-sensitive Ca2+/Heavy Metal Pump. J. Biol. Chem. 283: 9633-9641. 18252706
Morii, M., M. Yamauchi, T. Ichikawa, T. Fujii, Y. Takahashi, S. Asano, N. Takeguchi, and H. Sakai. (2008). Involvement of the H3O+-Lys-164 -Gln-161-Glu-345 charge transfer pathway in proton transport of gastric H+,K+-ATPase. J. Biol. Chem. 283: 16876-16884. 18403373
Morsomme, P., M. Chami, S. Marco, J. Nader, K.A. Ketchum, A. Goffeau, and J.-L. Rigaud. (2002). Characterization of a hyperthermophilic P-type ATPase from Methanococcus jannaschii expressed in yeast. J. Biol. Chem. 277: 29608-29616. 12048206
Morth J.P., B.P. Pedersen, M.S. Toustrup-Jensen, T.L. Sørensen, J. Petersen, J.P. Andersen, B. Vilsen, P. Nissen. (2007). Crystal structure of the sodium-potassium pump. Nature. 450: 1043-1049. 18075585
Mukherjee, T., D. Mandal, and A. Bhaduri. (2001). Leishmania plasma membrane Mg2+-ATPase is a H+/K+-antiporter involved in glucose symport. J. Biol. Chem. 276: 55563-55569. 11087746
Mukhopadhyay, S. and A.D. Linstedt. (2011). Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proc. Natl. Acad. Sci. USA 108: 858-863. 21187401
Møller, J.V., C. Olesen, A.M. Winther, and P. Nissen. (2010). What can be learned about the function of a single protein from its various X-ray structures: the example of the sarcoplasmic calcium pump. Methods Mol Biol 654: 119-140. 20665264
Naik, P.K., M. Srivastava, P. Bajaj, S. Jain, A. Dubey, P. Ranjan, R. Kumar, and H. Singh. (2011). The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J Mol Model 17: 333-357. 20461426
Nakakihara, E., H. Kondo, S. Nakashima, and B. Ezaki. (2009). Role of N-terminal His-rich Domain of Oscillatoria brevis Bxa1 in Both Ag(I)/Cu(I) and Cd(II)/Zn(II) Tolerance. Open Microbiol J 3: 15-22. 19440254
Neef, J., V.F. Andisi, K.S. Kim, O.P. Kuipers, and J.J. Bijlsma. (2011). Deletion of a cation transporter promotes lysis in Streptococcus pneumoniae. Infect. Immun. 79: 2314-2323. 21422174
Nyblom, M., H. Poulsen, P. Gourdon, L. Reinhard, M. Andersson, E. Lindahl, N. Fedosova, and P. Nissen. (2013). Crystal structure of Na+, K+-ATPase in the Na+-bound state. Science 342: 123-127. 24051246
Okunade, G.W., M.L. Miller, M. Azhar, A. Andringa, L.P. Sanford, T. Doetschman, V. Prasad, and G.E. Shull. (2007). Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem. 282: 26517-26527. 17597066
Olesen C., M. Picard, A.M. Winther, C. Gyrup, J.P. Morth, C. Oxvig, J.V. Møller, P. Nissen. (2007). The structural basis of calcium transport by the calcium pump. Nature. 450: 1036-1042. 18075584
Padilla-Benavides, T., C.J. McCann, and J.M. Arguello. (2012). The mechanism of Cu+ transport ATPases: Interaction with Cu+ chaperones and the role of transient metal binding sites. J. Biol. Chem. [Epub: Ahead of Print] 23184962
Palmgren M.G., Christensen G. (1994). Functional comparisons between plant plasma membrane H(+)-ATPase isoforms expressed in yeast. J. Biol. Chem. 269: 3027-3033. 8300635
Paulusma CC. and Elferink RP. (2010). P4 ATPases--the physiological relevance of lipid flipping transporters. FEBS Lett. 584(13):2708-16. 20450914
Pedersen, B.P., M.J. Buch-Pedersen, J.P. Morth, M.G. Palmgren, and P. Nissen. (2007). Crystal structure of the plasma membrane proton pump. Nature 450: 1111-1114. 18075595
Pérez-Victoria, F.J., F. Gamarro, M. Ouellette, and S. Castanys. (2003). Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278: 49965-49971. 14514670
Peréz-Victoria, F.J., Sanchez-Canete, M.P., Castanys, S., and Gamarro, F. (2006). Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 281: 23766-23775. 16785229
Petrov, V.V. (2009). Functioning of Saccharomyces cerevisiae Pma1 H+-ATPase carrying the minimal number of cysteine residues. Biochemistry (Mosc) 74: 1155-1163. 19916929
Plattner, H. (2014). Calcium Regulation in the Protozoan Model, Paramecium tetraurelia. J Eukaryot Microbiol 61: 95-114. 24001309
Pomorski, T., R. Lombardi, H. Riezman, P.F. Devaux, G. van Meer, and J.C. Holthuis. (2003). Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell. 14(3):1240-1254. 12631737
Pontel, L.B., M.E. Audero, M. Espariz, S.K. Checa, and F.C. Soncini. (2007). GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol. Microbiol. 66: 814-825. 17919284
Poulsen, H., H. Khandelia, J.P. Morth, M. Bublitz, O.G. Mouritsen, J. Egebjerg, and P. Nissen. (2010). Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature 467: 99-102. 20720542
Poulsen, H., P. Nissen, O.G. Mouritsen, and H. Khandelia. (2012). Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations. J. Biol. Chem. 287: 15959-15965. 22433860
Poulsen, L.R., R.L. López-Marqués, S.C. McDowell, J. Okkeri, D. Licht, A. Schulz, T. Pomorski, J.F. Harper, and M.G. Palmgren. (2008). The Arabidopsis P4-ATPase ALA3 Localizes to the Golgi and Requires a β-Subunit to Function in Lipid Translocation and Secretory Vesicle Formation. Plant Cell 20: 658-676. 18344284
Prell, J., G. Mulley, F. Haufe, J.P. White, A. Williams, R. Karunakaran, J.A. Downie, and P.S. Poole. (2012). The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol. Microbiol. 84: 117-129. 22340847
Qiu, L.Y., E. Krieger, G. Schaftenaar, H.G. Swarts, P.H. Willems, J.J. De Pont, and J.B. Koenderink. (2005). Reconstruction of the complete ouabain-binding pocket of Na,K-ATPase in gastric H,K-ATPase by substitution of only seven amino acids. J. Biol. Chem. 280: 32349-32355. 16051601
Raimunda, D., T. Padilla-Benavides, S. Vogt, S. Boutigny, K.N. Tomkinson, L.A. Finney, and J.M. Argüello. (2013). Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 5: 144-151. 23354150
Rajendran, V.M., P. Sangan, J. Geibel, and H.J. Binder. (2000). Ouabain-sensitive H,K-ATPase functions as Na,K-ATPase in apical membranes of rat distal colon. J. Biol. Chem. 275: 13035-13040. 10777607
Ray, N.B., L. Durairaj, B.B. Chen, B.J. McVerry, A.J. Ryan, M. Donahoe, A.K. Waltenbaugh, C.P. O'Donnell, F.C. Henderson, C.A. Etscheidt, D.M. McCoy, M. Agassandian, E.C. Hayes-Rowan, T.A. Coon, P.L. Butler, L. Gakhar, S.N. Mathur, J.C. Sieren, Y.Y. Tyurina, V.E. Kagan, G. McLennan, and R.K. Mallampalli. (2010). Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat. Med. 16: 1120-1127. 20852622
Rensing, C., B. Fan, R. Sharma, B. Mitra, amd B.P. Rosen. (2000). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652-656. 10639134
Rensing, C., M. Ghosh, and B.P. Rosen. (1999). Families of soft-metal-ion transporting ATPase. J. Bacteriol. 181: 5891-5897. 10498699
Rensing, C., Y. Sun, B. Mitra, and B.P. Rosen. (1998). Pb(II)-translocating P-type ATPases. J. Biol. Chem. 273: 32614-32617. 9830000
Reyes, N., and D.C. Gadsby. (2006). Ion permeation through the Na+ ,K+ -ATPase. Nature 443: 470-474. 17006516
Riekhof, W.R. and D.R. Voelker. (2009). The yeast plasma membrane P(4)-ATPases are major transporters for lysophospholipids. Biochim. Biophys. Acta. 1791: 620-627. 19268715
Riekhof, W.R. and Voelker, D.R. (2006). Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae. J. Biol. Chem. 281: 36588-36596. 17015438
Riekhof, W.R., J. Wu, M.A. Gijón, S. Zarini, R.C. Murphy, and D.R. Voelker. (2007). Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem. 282: 36853-36861. 17951629
Rocafull, M.A., F.J. Romero, L.E. Thomas, and J.R. del Castillo. (2011). Isolation and cloning of the K+-independent, ouabain-insensitive Na+-ATPase. Biochim. Biophys. Acta. 1808: 1684-1700. 21334305
Rodríguez-Navarro, A. and B. Benito. (2010). Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochim. Biophys. Acta. 1798: 1841-1853. 20650263
Rossbach, S., D.J. Mai, E.L. Carter, L. Sauviac, D. Capela, C. Bruand, and F.J. de Bruijn. (2008). Response of Sinorhizobium meliloti to elevated concentrations of cadmium and zinc. Appl. Environ. Microbiol. 74: 4218-4221. 18469129
Rossini, G.P. and A. Bigiani. (2011). Palytoxin action on the Na+,K+-ATPase and the disruption of ion equilibria in biological systems. Toxicon 57: 429-439. 20932855
Rutherford, J.C., J.S. Cavet, and N.J. Robinson. (1999). Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274: 25827-25832. 10464323
Sacchetto, R., I. Bertipaglia, S. Giannetti, L. Cendron, F. Mascarello, E. Damiani, E. Carafoli, and G. Zanotti. (2012). Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. J Struct Biol 178: 38-44. 22387132
Satoh-Nagasawa, N., M. Mori, N. Nakazawa, T. Kawamoto, Y. Nagato, K. Sakurai, H. Takahashi, A. Watanabe, and H. Akagi. (2012). Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant Cell Physiol. 53: 213-224. 22123790
Scarborough, G.A. (1999). Structure and function of the P-type ATPases. Curr. Opin. Cell Biol. 11: 517-522. 10449329
Schack, V.R., R. Holm, and B. Vilsen. (2012). Inhibition of phosphorylation of na+,k+-ATPase by mutations causing familial hemiplegic migraine. J. Biol. Chem. 287: 2191-2202. 22117059
Scheiner-Bobis, G. (2002). The sodium pump. Its molecular properties and mechanics of ion transport. Eur. J. Biochem. 269: 2424-2433. 12027879
Schiøtt, M., S.M. Romanowsky, L. Baekgaard, M.K. Jakobsen, M.G. Palmgren, and J.F. Harper. (2004). A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc. Natl. Acad. Sci. USA 101: 9502-9507. 15197266
Schoner, W. (2002). Endogenous cardiac glycosides, a new class of steroid hormones. Eur. J. Biochem. 269: 2440-2448. 12027881
Seigneurin-Berny, D., A. Gravot, P. Auroy, C. Mazard, A. Kraut, G. Finazzi, D. Grunwald, F. Rappaport, A. Vavasseur, J. Joyard, P. Richaud, and N. Rolland. (2006). HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J. Biol. Chem. 281: 2882-2892. 16282320
Shin, J.M., K. Munson, and G. Sachs. (2011). Gastric H+,K+-ATPase. Compr Physiol 1: 2141-2153. 23733700
Shinoda, T., H. Ogawa, F. Cornelius, and C. Toyoshima. (2009). Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459: 446-450. 19458722
Shono, M., M. Wada, Y. Hara, and T. Fujii. (2001). Molecular cloning of Na+-ATPase cDNA from a marine alga Heterosigma akashiwo. Biochim. Biophys. Acta 1511: 193-199. 11248217
Silver, S. (1996). Transport of inorganic cations. In F.C. Neidhardt et al. (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. Washington, D.C.: ASM Press, pp. 1091-1102.
Sinkins WG., Estacion M., Prasad V., Goel M., Shull GE., Kunze DL. and Schilling WP. (2009). Maitotoxin converts the plasmalemmal Ca(2+) pump into a Ca(2+)-permeable nonselective cation channel. Am J Physiol Cell Physiol. 297(6):C1533-43. 19794142
Sitthisak, S., L. Knutsson, J.W. Webb, and R.K. Jayaswal. (2007). Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology. 153: 4274-4283. 18048940
Stevens, H.C., L. Malone, and J.W. Nichols. (2008). The putative aminophospholipid translocases, DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma membrane of Saccharomyces cerevisiae. J. Biol. Chem. 283: 35060-35069. 18931395
Stokes, D.L. and N.M. Green. (2000). Modeling a dehalogenase fold into the 8-Å density map for Ca2+-ATPase defines a new domain structure. Biophys. J. 78: 1765-1776. 10733958
Stone, A., C. Chau, C. Eaton, E. Foran, M. Kapur, E. Prevatt, N. Belkin, D. Kerr, T. Kohlin, and P. Williamson. (2012). Biochemical characterization of P4-ATPase mutations identified in patients with progressive familial intrahepatic cholestasis. J. Biol. Chem. 287: 41139-41151. 23060447
Suman, J., P. Kotrba, and T. Macek. (2014). Putative P1B-type ATPase from the bacterium Achromobacter xylosoxidans A8 alters Pb2+/Zn2+/Cd2+-resistance and accumulation in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1838: 1338-1343. 24491492
Swarts, H.G., J.B. Koenderink, P.H. Willems, and J.J. De Pont. (2005). The non-gastric H,K-ATPase is oligomycin-sensitive and can function as an H+,NH4+-ATPase. J. Biol. Chem. 280: 33115-33122. 16046397
Takeda, K., H. Eguchi, S. Soeda, A. Shirahata, and M. Kawamura. (2005). Fe(II)/Cu(I)-dependent P-type ATPase activity in the liver of Long-Evans cinnamon rats. Life Sci. 76: 2203-2209. 15733935
Takeuchi, A., N. Reyes, P. Artigas, and D.C. Gadsby. (2008). The ion pathway through the opened Na+,K+-ATPase pump. Nature 456: 413-416. 18849964
Tang, X., M.S. Halleck, R.A. Schlegel, and P. Williamson. (1996). A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272: 1495-1497. 8633245
Therien, A.G., S.J.D. Karlish, and R. Blostein. (1999). Expression and functional role of the γ-subunit of the Na,K-ATPase in mammalian cells. J. Biol. Chem. 274: 12252-12256. 10212192
Thever, M.D. and M.H. Saier, Jr. (2009). Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J. Membr. Biol. 229: 115-130. 19548020
Ton, V.-K., D. Mandal, C. Vahadji, and R. Rao. (2002). Functional expression in yeast of the human secretory pathway Ca2+, Mn2+-ATPase defective in Hailey-Hailey disease. J. Biol. Chem. 277: 6422-6427. 11741891
Tong, L., S. Nakashima, M. Shibasaka, M. Katsuhara, and K. Kasamo. (2002). A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. J. Bacteriol. 184: 5027-5035. 12193618
Toyoshima, C. (2008). Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476: 3-11. 18455499
Toyoshima, C. and H. Nomura. (2002). Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418: 598-599. 12167852
Toyoshima, C., M. Nakasako, H. Nomura, and H. Ogawa. (2000). Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405: 633-634. 10864315
Toyoshima, C., Y. Norimatsu, S. Iwasawa, T. Tsuda, and H. Ogawa. (2007). How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc. Natl. Acad. Sci. USA 104: 19831-19836. 18077416
Traverso, M.E., P. Subramanian, R. Davydov, B.M. Hoffman, T.L. Stemmler, and A.C. Rosenzweig. (2010). Identification of a hemerythrin-like domain in a P1B-type transport ATPase. Biochemistry 49: 7060-7068. 20672819
Tsai, K.-J., Y.-F. Lin, M.D. Wong, H.H.-C. Yang, H.-L. Fu, and B.P. Rosen. (2002). Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bioenerg. Biomembr. 34: 147-156. 12171064
Tümer, Z. (2013). An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 34: 417-429. 23281160
Ueno, D., N. Yamaji, I. Kono, C.F. Huang, T. Ando, M. Yano, and J.F. Ma. (2010). Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA 107: 16500-16505. 20823253
Ueno, S., N. Kaieda, and N. Koyama. (2000). Characterization of a P-type Na+-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. J. Biol. Chem. 275: 14537-14540. 10799538
Ushimaru, M. and Y. Fukushima. (2008). The dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum. Biochem. J. 414: 357-361. 18471093
Van Baelen K., J. Vanoevelen, L. Missiaen, L. Raeymaekers, F. Wuytack. (2001). The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J. Biol. Chem. 276: 10683-10691.
van der Velden, L.M., S.F. van de Graaf, and L.W. Klomp. (2010). Biochemical and cellular functions of P4 ATPases. Biochem. J. 431: 1-11. 20836764
Vedovato, N. and D.C. Gadsby. (2010). The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions. J Gen Physiol 136: 63-82. 20548052
Villafane, A.A., Y. Voskoboynik, M. Cuebas, I. Ruhl, and E. Bini. (2009). Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. Biochem. Biophys. Res. Commun. 385: 67-71. 19427833
Wang, Y., P. Luo, L. Zhang, C. Hu, C. Ren, and J. Xia. (2013). Cloning of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) gene from white shrimp, Litopenaeus vannamei and its expression level analysis under salinity stress. Mol Biol Rep 40: 6213-6221. 24085584
Watanabe, Y., Y. Shimono, H. Tsuji, and Y. Tamai. (2002). Role of the glutamic and aspartic residues in Na+-ATPase function in the ZrENA1 gene of Zygosaccharomyces rouxii. FEMS Microbiol. Lett. 209: 39-43. 12007651
Wdowikowska, A. and G. Kłobus. (2011). [Plant P-type ATPases]. Postepy Biochem 57: 85-91. 21735823
Weissman, Z., R. Shemer, and D. Kornitzer. (2002). Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol. Microbiol. 44: 1551-1560. 12067343
Wetzel, R.K., J.L. Pascoa, and E. Arystarkhova. (2004). Stress-induced expression of the γsubunit (FXYD2) modulates Na,K-ATPase activity and cell growth. J. Biol. Chem. 279: 41750-41757. 15280368
Wiangnon, K., W. Raksajit, and A. Incharoensakdi. (2007). Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol. Lett. 270: 139-145. 17302934
Wolschendorf, F., D. Ackart, T.B. Shrestha, L. Hascall-Dove, S. Nolan, G. Lamichhane, Y. Wang, S.H. Bossmann, R.J. Basaraba, and M. Niederweis. (2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 108: 1621-1626. 21205886
Worrell, R.T., L. Merk, and J.B. Matthews. (2008). Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G429-440. 18032481
Wu, C.C., A. Gardarin, A. Martel, E. Mintz, F. Guillain, and P. Catty. (2006). The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes. J. Biol. Chem. 281: 29533-29541. 16835223
Wu, C.C., W.J. Rice, and D.L. Stokes. (2008). Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16: 976-985. 18547529
Wu, C.H., L.A. Vasilets, K. Takeda, M. Kawamura, and W. Schwarz. (2003). Functional role of the N-terminus of a Na+,K+-ATPase α-subunit as an inactivation gate of palytoxin-induced pump channel. Biochim. Biophys. Acta 1609: 55-62. 12507758
Xiang, M., D. Mohamalawari, and R. Rao. (2005). A novel isoform of the secretory pathway Ca2+,Mn2+-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J. Biol. Chem. 280: 11608-11614. 15677451
Xu, C., W.J. Rice, W. He, and D.L. Stokes. (2002). A structural model for the catalytic cycle of Ca2+-ATPase. J. Mol. Biol. 316: 201-211. 11829513
Zeng, X.T., T. Higashida, M. Hara, N. Hattori, K. Kitagawa, K. Omori, and C. Inagaki. (1999). Antiserum against Cl- pump complex recognizes 51 kDa protein, a possible catalytic unit in rat brain. Neurosci. Lett. 258: 85-88. 9875533
Zhang, S., S. Malmersjö, J. Li, H. Ando, O. Aizman, P. Uhlén, K. Mikoshiba, and A. Aperia. (2006). Distinct role of the N-terminal tail of the Na,K-ATPase catalytic subunit as a signal transducer. J. Biol. Chem. 281: 21954-21962. 16723354
Zhang, Z., D. Lewis, C. Strock, G. Inesi, M. Nakasako, H. Nomura, and C. Toyoshima. (2000). Detaled characterization of the cooperative mechanism of a Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase. Biocemistry 39: 8758-8767. 10913287
Zhou, X. and T.R. Graham. (2009). Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc. Natl. Acad. Sci. USA 106: 16586-16591. 19805341
Zielazinski, E.L., G.E. Cutsail, 3rd, B.M. Hoffman, T.L. Stemmler, and A.C. Rosenzweig. (2012). Characterization of a Cobalt-Specific P(1B)-ATPase. Biochemistry 51: 7891-7900. 22971227