TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.3.8.2
Golgi aminophospholipid translocase (flipping from the exofacial to the cytosolic leaflet of membranes), required for vesicle-mediated protein transport from the Golgi and endosomes (Pomorski et al., 2003). The system has been reconstituted after purification in proteoliposomes. It flips phosphatidyl serine but not phosphatidylcholine or sphingomyelin (Zhou and Graham, 2009).  Drs2p (ACT3; ATP8A2), required for phospholipid translocation across the Golgi membrane: PL (in) ATP → PL (out) ADP Pì (flippase activity). Interacts with CDC50 (Bryde et al., 2010). Activated by ArfGEF when bound to the C-terminus (Natarajan et al. 2009). The beta-subunit, CDC50A, allows the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2 (Coleman and Molday, 2011).

Accession Number:P39524
Protein Name:ATC3 aka DRS2 aka YAL026C aka FUN38
Length:1355
Molecular Weight:153845.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:8
Location1 / Topology2 / Orientation3: Golgi apparatus1 / Multi-pass membrane protein2
Substrate Aminophospholipids

Cross database links:

Genevestigator: P39524 P39524
eggNOG: fuNOG04127 fuNOG04127
HEGENOM: HBG745019 HBG745019
DIP: DIP-2216N DIP-2216N
RefSeq: NP_009376.1   
Entrez Gene ID: 851207   
Pfam: PF00122    PF00702   
KEGG: sce:YAL026C   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005802 C:trans-Golgi network
GO:0005524 F:ATP binding
GO:0015662 F:ATPase activity, coupled to transmembrane m...
GO:0000287 F:magnesium ion binding
GO:0004012 F:phospholipid-translocating ATPase activity
GO:0005515 F:protein binding
GO:0006754 P:ATP biosynthetic process
GO:0006897 P:endocytosis
GO:0006886 P:intracellular protein transport
GO:0045332 P:phospholipid translocation
GO:0006892 P:post-Golgi vesicle-mediated transport
GO:0000028 P:ribosomal small subunit assembly

References (16)

[1] “DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae.”  Ripmaster T.L.et.al.   8247005
[2] “The nucleotide sequence of chromosome I from Saccharomyces cerevisiae.”  Bussey H.et.al.   7731988
[3] “Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo.”  Gall W.E.et.al.   12372257
[4] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[5] “Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae.”  Saito K.et.al.   15090616
[6] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[7] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[8] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[9] “DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae.”  Ripmaster T.L.et.al.   8247005
[10] “The nucleotide sequence of chromosome I from Saccharomyces cerevisiae.”  Bussey H.et.al.   7731988
[11] “Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo.”  Gall W.E.et.al.   12372257
[12] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[13] “Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae.”  Saito K.et.al.   15090616
[14] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[15] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[16] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MNDDRETPPK RKPGEDDTLF DIDFLDDTTS HSGSRSKVTN SHANGYYIPP SHVLPEETID 
61:	LDADDDNIEN DVHENLFMSN NHDDQTSWNA NRFDSDAYQP QSLRAVKPPG LFARFGNGLK 
121:	NAFTFKRKKG PESFEMNHYN AVTNNELDDN YLDSRNKFNI KILFNRYILR KNVGDAEGNG 
181:	EPRVIHINDS LANSSFGYSD NHISTTKYNF ATFLPKFLFQ EFSKYANLFF LCTSAIQQVP 
241:	HVSPTNRYTT IGTLLVVLIV SAMKECIEDI KRANSDKELN NSTAEIFSEA HDDFVEKRWI 
301:	DIRVGDIIRV KSEEPIPADT IILSSSEPEG LCYIETANLD GETNLKIKQS RVETAKFIDV 
361:	KTLKNMNGKV VSEQPNSSLY TYEGTMTLND RQIPLSPDQM ILRGATLRNT AWIFGLVIFT 
421:	GHETKLLRNA TATPIKRTAV EKIINRQIIR LFTVLIVLIL ISSIGNVIMS TADAKHLSYL 
481:	YLEGTNKAGL FFKDFLTFWI LFSNLVPISL FVTVELIKYY QAFMIGSDLD LYYEKTDTPT 
541:	VVRTSSLVEE LGQIEYIFSD KTGTLTRNIM EFKSCSIAGH CYIDKIPEDK TATVEDGIEV 
601:	GYRKFDDLKK KLNDPSDEDS PIINDFLTLL ATCHTVIPEF QSDGSIKYQA ASPDEGALVQ 
661:	GGADLGYKFI IRKGNSVTVL LEETGEEKEY QLLNICEFNS TRKRMSAIFR FPDGSIKLFC 
721:	KGADTVILER LDDEANQYVE ATMRHLEDYA SEGLRTLCLA MRDISEGEYE EWNSIYNEAA 
781:	TTLDNRAEKL DEAANLIEKN LILIGATAIE DKLQDGVPET IHTLQEAGIK IWVLTGDRQE 
841:	TAINIGMSCR LLSEDMNLLI INEETRDDTE RNLLEKINAL NEHQLSTHDM KSLALVIDGK 
901:	SLGFALEPEL EDYLLTVAKL CKAVICCRVS PLQKALVVKM VKRKSSSLLL AIASGANDVS 
961:	MIQAAHVGVG ISGMEGMQAA RSADIALGQF KFLKKLLLVH GSWSYQRISV AILYSFYKNT 
1021:	ALYMTQFWYV FANAFSGQSI MESWTMSFYN LFFTVWPPFV IGVFDQFVSS RLLERYPQLY 
1081:	KLGQKGQFFS VYIFWGWIIN GFFHSAIVFI GTILIYRYGF ALNMHGELAD HWSWGVTVYT 
1141:	TSVIIVLGKA ALVTNQWTKF TLIAIPGSLL FWLIFFPIYA SIFPHANISR EYYGVVKHTY 
1201:	GSGVFWLTLI VLPIFALVRD FLWKYYKRMY EPETYHVIQE MQKYNISDSR PHVQQFQNAI 
1261:	RKVRQVQRMK KQRGFAFSQA EEGGQEKIVR MYDTTQKRGK YGELQDASAN PFNDNNGLGS 
1321:	NDFESAEPFI ENPFADGNQN SNRFSSSRDD ISFDI