TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.E.1.1.1
Bacteriorhodopsin. Proton efflux occurs via a transient linear water-molecule chain in a hydrophobic section of the Brho channel between Asp96 and Asp85 (Freier et al., 2011).  It can be converted to a chloride uptake pump by a single amino acid substitution at position 85.  However, halorhodopsin (3.E.1.2.1), which pumps chloride ions (Cl-) into the cell, apparently does not use hydrogen-bonded water molecules for Cl- transport (Muroda et al. 2012).  Nango et al. 2016 used time-resolved serial femtosecond crystallography and an x-ray free electron laser to visualize conformational changes in bRho from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bRho transports protons uphill against a transmembrane concentration gradient. Nango et al. 2016 have created a 3-d movie of structural changes in the protein showing that an initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. Brho has light-independent lipid scramblase activity (Verchère et al. 2017). This activity occurs  at a rate >10,000 per trimer per second, comparable to that of other scramblases including bovine rhodopsin and fungal TMEM16 proteins. BR scrambles fluorescent analogues of common phospholipids but does not transport a glycosylated diphosphate isoprenoid lipid. In silico analyses suggested that membrane-exposed polar residues in transmembrane helices 1 and 2 of BR may provide the molecular basis for lipid translocation by coordinating the polar head-groups of transiting phospholipids. Consistent with this possibility, extensive coarse-grained molecular dynamics simulations of a BR trimer in a phospholipid membrane revealed water penetration along transmembrane helix 1 with the cooperation of a polar residue (Y147 in transmembrane helix 5) in the adjacent protomer. These findings suggest that the lipid translocation pathway may lie at or near the interface of the protomers of the BR trimer (Verchère et al. 2017).

Accession Number:P02945
Protein Name:BACR aka BOP aka VNG1467G
Length:262
Molecular Weight:28256.00
Species:Halobacterium halobium [2242]
Number of TMSs:7
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate H+

Cross database links:

HEGENOM: HBG498017
RefSeq: NP_280292.1   
Entrez Gene ID: 1448071   
Pfam: PF01036   
BioCyc: HSP64091:VNG1467G-MONOMER   
KEGG: hal:VNG1467G   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0005216 F:ion channel activity
GO:0009881 F:photoreceptor activity
GO:0007602 P:phototransduction
GO:0018298 P:protein-chromophore linkage
GO:0015992 P:proton transport

References (25)

[1] “The bacteriorhodopsin gene.”  Dunn R.J.et.al.   12049093
[2] “Studies on the light-transducing pigment bacteriorhodopsin.”  Dunn R.J.et.al.   6327180
[3] “Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.”  Soppa J.et.al.   8478333
[4] “Bacteriorhodopsin precursor. Characterization and its integration into the purple membrane.”  Seehra J.S.et.al.   6706999
[5] “Genome sequence of Halobacterium species NRC-1.”  Ng W.V.et.al.   11016950
[6] “Amino acid sequence of bacteriorhodopsin.”  Khorana H.G.et.al.   291920
[7] “Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin.”  Ball L.E.et.al.   9541408
[8] “Attachment site(s) of retinal in bacteriorhodopsin.”  Katre N.V.et.al.   6794028
[9] “Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins.”  Whitelegge J.P.et.al.   9655347
[10] “Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.”  Faham S.et.al.   11829498
[11] “Tertiary structure of bacteriorhodopsin. Positions and orientations of helices A and B in the structural map determined by neutron diffraction.”  Popot J.-L.et.al.   2614846
[12] “Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.”  Henderson R.et.al.   2359127
[13] “Electron-crystallographic refinement of the structure of bacteriorhodopsin.”  Grigorieff N.et.al.   8676377
[14] “Three-dimensional structure of proteolytic fragment 163-231 of bacterioopsin determined from nuclear magnetic resonance data in solution.”  Barsukov I.L.et.al.   1606953
[15] “1H-15N-NMR studies of bacteriorhodopsin Halobacterium halobium. Conformational dynamics of the four-helical bundle.”  Orekhov V.Y.et.al.   1332860
[16] “Surface of bacteriorhodopsin revealed by high-resolution electron crystallography.”  Kimura Y.et.al.   9296502
[17] “X-ray structure of bacteriorhodopsin at 2.5-A from microcrystals grown in lipidic cubic phases.”  Pebay-Peyroula E.et.al.   9287223
[18] “Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.”  Essen L.-O.et.al.   9751724
[19] “Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution.”  Luecke H.et.al.   9632391
[20] “Structure of bacteriorhodopsin at 1.55-A resolution.”  Luecke H.et.al.   10452895
[21] “High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.”  Edman K.et.al.   10548112
[22] “Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution.”  Belrhali H.et.al.   10467143
[23] “Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.”  Luecke H.et.al.   10903866
[24] “Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin.”  Royant A.et.al.   10949307
[25] “Molecular mechanism of vectorial proton translocation by bacteriorhodopsin.”  Subramaniam S.et.al.   10949309
Structure:
1AP9   1AT9   1BAC   1BAD   1BCT   1BHA   1BHB   1BM1   1BRD   1BRR   [...more]

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MLELLPTAVE GVSQAQITGR PEWIWLALGT ALMGLGTLYF LVKGMGVSDP DAKKFYAITT 
61:	LVPAIAFTMY LSMLLGYGLT MVPFGGEQNP IYWARYADWL FTTPLLLLDL ALLVDADQGT 
121:	ILALVGADGI MIGTGLVGAL TKVYSYRFVW WAISTAAMLY ILYVLFFGFT SKAESMRPEV 
181:	ASTFKVLRNV TVVLWSAYPV VWLIGSEGAG IVPLNIETLL FMVLDVSAKV GFGLILLRSR 
241:	AIFGEAEAPE PSAGDGAAAT SD