TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


9.A.1.1.1
The RalA binding protein 1 (RalBP1, RLIP1 or RLIP76) multidrug exporter (Awasthi et al., 2000; Sharma et al., 2001; Awasthi et al., 2007). RLIP76 mediates ATP-dependent transport of S-(2,4-dinitrophenyl)-glutathione (DNP-SG) and doxorubicin (DOX) and is the major ATP-dependent transporter of glutathione conjugates of electrophiles (GS-E) and DOX in erythrocytes (Sharma et al. 2001). It can thus catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon. The RLIP76 Ral binding domain binds to both the switch regions of RalB, which are the parts of the G protein that change conformation upon nucleotide exchange (Mott and Owen 2010). RLIP76 may play roles in endocytosis, mitochondrial fission, cell spreading and migration, actin dynamics during gastrulation, and Ras-induced tumorigenesis (Goldfinger and Lee 2013). It may additionaqlly serves as a scaffold protein that brings together proteins forming an endocytotic complex during interphase and also with CDK1 to switch off endocytosis (Jullien-Flores et al. 1995).

Accession Number:Q15311
Protein Name:RLIP76
Length:655
Molecular Weight:76063.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:2
Location1 / Topology2 / Orientation3: Membrane1 / Peripheral membrane protein2
Substrate drugs

Cross database links:

Genevestigator: Q15311
eggNOG: prNOG10919
HEGENOM: HBG713891
RefSeq: NP_006779.1   
Entrez Gene ID: 10928   
Pfam: PF00620   
OMIM: 605801  gene
KEGG: hsa:10928   

Gene Ontology

GO:0005622 C:intracellular
GO:0016020 C:membrane
GO:0043492 F:ATPase activity, coupled to movement of sub...
GO:0030675 F:Rac GTPase activator activity
GO:0048365 F:Rac GTPase binding
GO:0017160 F:Ral GTPase binding
GO:0006935 P:chemotaxis
GO:0043089 P:positive regulation of Cdc42 GTPase activity
GO:0007264 P:small GTPase mediated signal transduction
GO:0006810 P:transport

References (14)

[1] “Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity.”  Jullien-Flores V.et.al.   7673236
[2] “Novel function of human RLIP76: ATP-dependent transport of glutathione conjugates and doxorubicin.”  Awasthi S.et.al.   10924126
[3] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[4] “Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral.”  Ikeda M.et.al.   9422736
[5] “RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis.”  Rosse C.et.al.   12775724
[6] “RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes.”  Sharma R.et.al.   11437348
[7] “AIP1/DAB2IP, a novel member of the Ras-GAP family, transduces TRAF2-induced ASK1-JNK activation.”  Zhang H.et.al.   15310755
[8] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[9] “Phosphoproteome of resting human platelets.”  Zahedi R.P.et.al.   18088087
[10] “Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis.”  Cantin G.T.et.al.   18220336
[11] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[12] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[13] “Large-scale proteomics analysis of the human kinome.”  Oppermann F.S.et.al.   19369195
[14] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332
Structure:
2KWH   2KWI   2MBG     

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MTECFLPPTS SPSEHRRVEH GSGLTRTPSS EEISPTKFPG LYRTGEPSPP HDILHEPPDV 
61:	VSDDEKDHGK KKGKFKKKEK RTEGYAAFQE DSSGDEAESP SKMKRSKGIH VFKKPSFSKK 
121:	KEKDFKIKEK PKEEKHKEEK HKEEKHKEKK SKDLTAADVV KQWKEKKKKK KPIQEPEVPQ 
181:	IDVPNLKPIF GIPLADAVER TMMYDGIRLP AVFRECIDYV EKYGMKCEGI YRVSGIKSKV 
241:	DELKAAYDRE ESTNLEDYEP NTVASLLKQY LRDLPENLLT KELMPRFEEA CGRTTETEKV 
301:	QEFQRLLKEL PECNYLLISW LIVHMDHVIA KELETKMNIQ NISIVLSPTV QISNRVLYVF 
361:	FTHVQELFGN VVLKQVMKPL RWSNMATMPT LPETQAGIKE EIRRQEFLLN CLHRDLQGGI 
421:	KDLSKEERLW EVQRILTALK RKLREAKRQE CETKIAQEIA SLSKEDVSKE EMNENEEVIN 
481:	ILLAQENEIL TEQEELLAME QFLRRQIASE KEEIERLRAE IAEIQSRQQH GRSETEEYSS 
541:	ESESESEDEE ELQIILEDLQ RQNEELEIKN NHLNQAIHEE REAIIELRVQ LRLLQMQRAK 
601:	AEQQAQEDEE PEWRGGAVQP PRDGVLEPKA AKEQPKAGKE PAKPSPSRDR KETSI