2.A.1 The Major Facilitator Superfamily (MFS)

The MFS is a very old, large and diverse superfamily that includes over 1 million sequenced members. They catalyze uniport, solute:cation (H+, but seldom Na+) symport and/or solute:H+ or solute:solute antiport. Most are of 400-600 amino acyl residues in length and possess either 12, 14, or occasionally, 24 transmembrane α-helical spanners (TMSs). The mechanistic principles applicable to all MFS carriers have been summarized by Law et al (2008), while Zhang et al. 2015 considered the interaction between protonation and the negative-inside membrane potential. Functional roles of the conserved sequence motifs were also discussed in the context of the 3D structures.

The 24 TMS MFS permease, NarK, of Paracoccus pantotrophus has two 12 TMS domains, NarK1 and NarK2, both of which are required for normal nitrate uptake. NarK1 catalyzes NO3-:H+ symport, dependent on the pmf, while NarK2 catalyzes NO3-:NO2- antiport, independently of the pmf (Wood et al., 2002). Thus, the protein is a fusion protein of two homologous but distinct MFS permeases.

MFS permeases exhibit specificity for sugars, polyols, drugs, neurotransmitters, Krebs cycle metabolites, phosphorylated glycolytic intermediates, amino acids, peptides, osmolites, siderophores (efflux), iron-siderophores (uptake), nucleosides, organic anions, inorganic anions, etc. They are found ubiquitously in all three kingdoms of living organisms. One member of the DHA2 family with 14 TMSs, the TetL Me2+ · tetracycline:H+ antiporter of B. subtilis (TC #2.A.1.3.16), which also exhibits monovalent ion antiport activity, can be converted to a monovalent cation (Na+, K+, H+) antiporter with no tetracycline transport activity by deletion of TMSs 7 and 8, the two central and extra TMSs (Jin et al., 2001). Genome analyses of MFS permeases have been published (Lorca et al., 2007).

A 6.5 Å resolution structure for the MFS permease, OxlT (TC #2.A.1.11.1) was obtained in early studies (Heymann et al., 2001; Hirai et al., 2002) which shows the positions of the transmembrane α-helices but does not allow assignment of the TMS # to these helices. Molecular modeling (Hirai et al., 2003) led to the suggestion that the 12 TMS protein arose from a 3 TMS element by two successive duplication events. The same suggestion resulted from sequence comparisons showing that the primordial 3 TMS element may have arisen from a VIC family (TC #1.A.1) 2 TMS channel-forming unit Hvorup & Saier, (2002).This conclusion has been extensively confirmed in several more recent studies.

The high-resolution 3-dimensional structures (3.3 and 3.5 Å resolution) of the glycerol-3-P:P antiporter (GlpT; TC #2.A.1.4.3) and the lactose:H+ symporter (LacY; TC #2.A.1.5.1), respectively (Huang et al., 2003 and Abramson et al., 2003, respectively; see also Locher et al., 2003; Guan et al., 2007) have been determined. These structures reveal the 2-fold symmetry expected, based on sequence similarity of the two halves. The substrate pathway is predicted to exist between the two halves of the permeases using an alternating access mechanism with a single substrate binding site (Huang et al., 2003). This mechanism is termed a 'rocker switch' type of movement.

As suggested above, MFS antiporters are believed to operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein (Law et al., 2008). In the sn-glycerol-3-phosphate transporter (GlpT) from Escherichia coli, the substrate-binding site is formed by several charged residues and a histidine that can be protonated. Salt-bridge formation and breakage are involved in the conformational changes of the protein during transport (Law et al., 2008).

Vesicular glutamate transporters (VGLUTs [2.A.1.14.13 and 2.A.1.14.16]) are responsible for the vesicular storage of L-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. VGLUT2 facilitates L-glutamate uptake in a membrane potential (ΔΨ)-dependent fashion. Uptake exhibited an absolute requirement for ~4 mM Cl- and was sensitive to Evans blue, but was insensitive to D,L-aspartate. VGLUT2s with mutations in the transmembrane-located residues Arg184, His128, and Glu191 showed a dramatic loss in L-glutamate transport activity. VGLUT2 appears to possess two intrinsic transport machineries that are independent of each other: a ΔΨ-dependent L-glutamate uptake and a Na+-dependent Pi uptake (Juge et al., 2006). 

Trichoderma spp. are avirulent, fungal, opportunistic plant symbionts present in nearly all climatic soils. These Trichoderma strains produce secondary metabolites that are potent bio-control agents against microbial pathogens and also can be plant growth promoters. The MFS includes a large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites in T. reesei (Chaudhary et al. 2016).

The generalized transport reactions catalyzed by MFS porters are:

(1) Uniport: S (out) ⇌ S (in)

(2) Symport: S (out) + [H+ (or Na+)] (out) ⇌ S (in) + [H+ (or Na+)] (in)

(3) Antiport: S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out) (S1 may be H+ or a solute)



This family belongs to the MFS Superfamily.

 

References:

Abbas, A., J.E. McGuire, D. Crowley, C. Baysse, M. Dow, and F. O'Gara. (2004). The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. Microbiology 150: 2443-2450.

Abdulhussein AA. and Wallace HM. (2014). Polyamines and membrane transporters. Amino Acids. 46(3):655-60.

Abramson, J., I. Smirnova, V. Kasho, G. Verner, H.R. Kaback, and S. Iwata. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610-615.

AbuAli, G. and S. Grimm. (2014). Isolation and Characterization of the Anticancer Gene Organic Cation Transporter Like-3 (ORCTL3). Adv Exp Med Biol 818: 213-227.

Adler, J. and E. Bibi. (2004). Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J. Biol. Chem. 279: 8957-8965.

Ai, P., S. Sun, J. Zhao, X. Fan, W. Xin, Q. Guo, L. Yu, Q. Shen, P. Wu, A.J. Miller, and G. Xu. (2009). Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J. 57: 798-809.

Alexander, N.J., S.P. McCormick, and T.M. Hohn. (1999). TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol. Gen. Genet. 261: 977-984.

Alfonso, A., K. Grundahl, J.R. McManus, J.M. Asbury, and J.B. Rand. (1994). Alternative splicing leads to two cholinergic proteins in Caenorhabditis elegans. J. Mol. Biol. 241: 627-630.

Allard, K.A., V. K. Viswanathan, and N.P. Cianciotto. (2006). lbtA and lbtB Are Required for Production of the Legionella pneumophila Siderophore Legiobactin. J. Bacteriol. 188: 1351-1363.

Almaguer, C., E. Fisher, and J. Patton-Vogt. (2006). Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Curr. Genet. 50: 367-375.

Aluri, S. and M. Büttner. (2007). Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc. Natl. Acad. Sci. U.S.A. 104: 2537-2542.

Alvarez, F.J., and J.B. Konopka. (2007). Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol. Biol. Cell. 18: 965-975.

Ambrose, K.D., R. Nisbet, and D.S. Stephens. (2005). Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob. Agents Chemother. 49: 4203-4209.

Amilhon, B., E. Lepicard, T. Renoir, R. Mongeau, D. Popa, O. Poirel, S. Miot, C. Gras, A.M. Gardier, J. Gallego, M. Hamon, L. Lanfumey, B. Gasnier, B. Giros, and S. El Mestikawy. (2010). VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 30: 2198-2210.

Anderson, P.M., Y.C. Sung, and J.A. Fuchs. (1990). The cyanase operon and cyanate metabolism. FEMS Microbiol. Rev. 7: 247-252.

Anzai, N. and H. Endou. (2011). Urate transporters: an evolving field. Semin Nephrol 31: 400-409.

Anzai, N., H. Miyazaki, R. Noshiro, S. Khamdang, A. Chairoungdua, J.-J. Shin, A. Enomoto, S. Sakamoto, T. Hirata, K. Tomita, Y. Kanai, and H. Endou. (2004). The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 279: 45942-45950.

Anzai, N., K. Ichida, P. Jutabha, T. Kimura, E. Babu, C.J. Jin, S. Srivastava, K. Kitamura, I. Hisatome, H. Endou, and H. Sakurai. (2008). Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem. 283: 26834-26838.

AONO, K. (1962). [Studies on protein in gallstone]. Fukuoka Igaku Zasshi 53: 897-926.

Aouameur, R., S. Da Cal, P. Bissonnette, M.J. Coady, and J.Y. Lapointe. (2007). SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 293(6):G1300-G1307.

Araki N., Suzuki T., Miyauchi K., Kasai D., Masai E. and Fukuda M. (201). Identification and characterization of uptake systems for glucose and fructose in Rhodococcus jostii RHA1. J Mol Microbiol Biotechnol. 20(3):125-36.

Arjona, F.J., E. de Vrieze, T.J. Visser, G. Flik, and P.H. Klaren. (2011). Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 152: 5065-5073.

Babu, E., Y. Kanai, A. Chairoungdua, D.K. Kim, Y. Iribe, S. Tangtrongsup, P. Jutabha, Y. Li, N. Ahmed, S. Sakamoto, N. Anzai, S. Nagamori, and H. Endou. (2003). Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J. Biol. Chem. 278: 43838-43845.

Bacher, P., S. Giersiefer, M. Bach, C. Fork, E. Schömig, and D. Gründemann. (2009). Substrate discrimination by ergothioneine transporter SLC22A4 and carnitine transporter SLC22A5: gain-of-function by interchange of selected amino acids. Biochim. Biophys. Acta. 1788: 2594-2602.

Bahn, A., Y. Hagos, S. Reuter, D. Balen, H. Brzica, W. Krick, B.C. Burckhardt, I. Sabolic, and G. Burckhardt. (2008). Identification of a New Urate and High Affinity Nicotinate Transporter, hOAT10 (SLC22A13). J. Biol. Chem. 283: 16332-16341.

Bai J., Mosley L. and Fralick JA. (2010). Evidence that the C-terminus of OprM is involved in the assembly of the VceAB-OprM efflux pump. FEBS Lett. 584(8):1493-7.

Baker, J., S.H. Wright, and F. Tama. (2012). Simulations of substrate transport in the multidrug transporter EmrD. Proteins 80: 1620-1632.

Baldwin, S.A. (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta 1154: 17-49.

Balmaceda-Aguilera C., Martos-Sitcha JA., Mancera JM. and Martinez-Rodriguez G. (2012). Cloning and expression pattern of facilitative glucose transporter 1 (GLUT1) in gilthead sea bream Sparus aurata in response to salinity acclimation. Comp Biochem Physiol A Mol Integr Physiol. 163(1):38-46.

Baltazar, F., C. Pinheiro, F. Morais-Santos, J. Azevedo-Silva, O. Queirós, A. Preto, and M. Casal. (2014). Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol 29: 1511-1524.

Bannam, T.L., P.A. Johanesen, C.L. Salvado, S.J. Pidot, K.A. Farrow, and J.I. Rood. (2004). The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology 150: 127-134.

Bansal, A., D. Mallik, D. Kar, and A.S. Ghosh. (2016). Identification of a multidrug efflux pump in Mycobacterium smegmatis. FEMS Microbiol. Lett. [Epub: Ahead of Print]

Bapna, A., L. Federici, H. Venter, S. Velamakanni, B. Luisi, T.P. Fan, and H.W. van Veen. (2007). Two proton translocation pathways in a secondary active multidrug transporter. J. Mol. Microbiol. Biotechnol. 12: 197-209.

Baranova, N. and H. Nikaido. (2002). The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 184: 4168-4176.

Barton, A., S. Eyre, J. Bowes, P. Ho, S. John, and J. Worthington. (2005). Investigation of the SLC22A4 gene (associated with rheumatoid arthritis in a Japanese population) in a United Kingdom population of rheumatoid arthritis patients. Arthritis Rheum 52: 752-758.

Baruffini, E., P. Goffrini, C. Donnini, and T. Lodi. (2006). Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Research DOI: 10.1111/j.1364.2006.00107.x.

Basso LR Jr., Gast CE., Mao Y. and Wong B. (2010). Fluconazole transport into Candida albicans secretory vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p. Eukaryot Cell. 9(6):960-70.

Beasley, F.C., E.D. Vinés, J.C. Grigg, Q. Zheng, S. Liu, G.A. Lajoie, M.E. Murphy, and D.E. Heinrichs. (2009). Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 72: 947-963.

Beaudoin, J., R. Ioannoni, L. López-Maury, J. Bähler, S. Ait-Mohand, B. Guérin, S.C. Dodani, C.J. Chang, and S. Labbé. (2011). Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J. Biol. Chem. 286: 34356-34372.

Becker, H.M. and J.W. Deitmer. (2008). Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1. J. Biol. Chem. 283: 21655-21667.

Becker, H.M., D. Hirnet, C. Fecher-Trost, D. Sultemeyer, and J.W. Deitmer. (2005). Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J. Biol. Chem. 280: 39882-39889.

Becker, H.M., M. Klier, and J.W. Deitmer. (2010). Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II. J. Membr. Biol. 234: 125-135.

Beckham, K.S., J.A. Potter, and S.E. Unkles. (2010). Formate-nitrite transporters: optimisation of expression, purification and analysis of prokaryotic and eukaryotic representatives. Protein Expr Purif 71: 184-189.

Behr, S., L. Fried, and K. Jung. (2014). Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J. Bacteriol. 196: 2023-2029.

Bellocchio, E.E., R.J. Reimer, R.T. Fremeau, Jr., and R.H. Edwards. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289: 957-960.

Benko, Z., C. Fenyvesvolgyi, M. Pesti, and M. Sipiczki. (2004). The transcription factor Pap1/Caf3 plays a central role in the determination of caffeine resistance in Schizosaccharomyces pombe. Mol. Genet. Genomics 271: 161-170.

Bennett, K.M., J. Liu, C. Hoelting, and J. Stoll. (2011). Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23. Mol. Cell Biochem 352: 143-154.

Bernal J., Guadano-Ferraz A. and Morte B. (2015). Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 11(7):406-17.

Besse A., Peduzzi J., Rebuffat S. and Carre-Mlouka A. (2015). Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins. Biochimie. 118:344-55.

Bhaskar, B.V., T.M. Babu, N.V. Reddy, and W. Rajendra. (2016). Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus. Drug Des Devel Ther 10: 3237-3252.

Bianco, M.V., F.C. Blanco, B. Imperiale, M.A. Forrellad, R.V. Rocha, L.I. Klepp, A.A. Cataldi, N. Morcillo, and F. Bigi. (2011). Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect Dis 11: 195.

Bleuel, C., Grosse, C., Taudte, N., Scherer, J., Wesenberg, D., Krauss, G.J., Nies, D.H., and Grass, G. (2005). TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J. Bacteriol. 187: 6701-6707.

Boccone, L., S. Mariotti, V. Dessì, D. Pruna, A. Meloni, and G. Loudianos. (2010). Allan-Herndon-Dudley syndrome (AHDS) caused by a novel SLC16A2 gene mutation showing severe neurologic features and unexpectedly low TRH-stimulated serum TSH. Eur J Med Genet 53: 392-395.

Bodoy, S., L. Martin, A. Zorzano, M. Palacín, R. Estévez, and J. Bertran. (2005). Identification of LAT4, a novel amino acid transporter with system L activity. J. Biol. Chem. 280: 12002-12011.

Bohn, C. and P. Bouloc. (1998). The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-β-D-thiogalactopyranoside exclusion and spectinomycin sensitivity. J. Bacteriol. 180: 6072-6075.

Boles, E. and C.P. Hollenberg. (1997). The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21: 85-111.

Boorer, K.J., D.D. Loo, and E.M. Wright. (1994). Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes. J. Biol. Chem. 269: 20417-20424.

Bossuyt, X., M. Müller, B. Hagenbuch, and P.J. Meier. (1996). Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J. Pharmacol. Exper. Therapeutics 276: 891-896.

Bost, S., F. Silva, and D. Belin. (1999). Transcriptional activation of ydeA, which encodes a member of the major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia coli arabinose PBAD promoter. J. Bacteriol. 181: 2185-2191.

Bozdag, G.O., I. Uluisik, G.S. Gulculer, H.C. Karakaya, and A. Koc. (2011). Roles of ATR1 paralogs YMR279c and YOR378w in boron stress tolerance. Biochem. Biophys. Res. Commun. 409: 748-751.

Brandenstein, L., M. Schweizer, J. Sedlacik, J. Fiehler, and S. Storch. (2015). Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet. [Epub: Ahead of Print]

Brickman, T.J. and S.K. Armstrong. (2005). Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J. Bacteriol. 187: 3650-3661.

Brignone, M.S., A. Lanciotti, S. Camerini, C. De Nuccio, T.C. Petrucci, S. Visentin, and E. Ambrosini. (2015). MLC1 protein: a likely link between leukodystrophies and brain channelopathies. Front Cell Neurosci 9: 66.

Brown, M.G., E.H. Mitchell, and D.L. Balkwill. (2008). Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria. Antimicrob. Agents Chemother. 52: 4518-4521.

Bukhari, F.J., H. Moradi, P. Gollapudi, H. Ju Kim, N.D. Vaziri, and H.M. Said. (2011). Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol Dial Transplant 26: 2137-2144.

Buyse, M., S.V. Sitaraman, X. Liu, A. Bado, and D. Merlin. (2002). Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J. Biol. Chem. 277: 28182-28190.

Cai, H., M. Hauser, F. Naider, and J.M. Becker. (2007). Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Eukaryot. Cell. 6: 1805-1813.

Callewaert, B.L., A. Willaert, W.S. Kerstjens-Frederikse, J. De Backer, K. Devriendt, B. Albrecht, M.A. Ramos-Arroyo, M. Doco-Fenzy, R.C. Hennekam, R.E. Pyeritz, O.N. Krogmann, G. Gillessen-kaesbach, E.L. Wakeling, S. Nik-zainal, C. Francannet, P. Mauran, C. Booth, M. Barrow, R. Dekens, B.L. Loeys, P.J. Coucke, and A.M. De Paepe. (2008). Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 29(1): 150-158.

Cannon, R.D., F.J. Fischer, K. Niimi, M. Niimi, and M. Arisawa. (1998). Drug pumping mechanisms in Candida albicans. Nippon Ishinkin Gakkai Zasshi 39: 73-78.

Cao, C., E.K. Pressman, E.M. Cooper, R. Guillet, M. Westerman, and K.O. O'Brien. (2014). Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status. Reproduction 148: 295-302.

Carayannopoulos, M.O., A. Schlein, A. Wyman, M. Chi, C. Keembiyehetty, and K.H. Moley. (2004). GLUT9 is differentially expressed and targeted in the preimplantation embryo. Endocrinology 145: 1435-1443.

Carayannopoulos, M.O., M.M. Chi, Y. Cui, J.M. Pingsterhaus, R.A. McKnight, M. Mueckler, S.U. Devaskar, and K.H. Moley. (2000). GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc. Natl. Acad. Sci. USA 97: 7313-7318.

Carolé, S., S. Pichoff, and J.P. Bouché. (1999). Escherichia coli gene ydeA encodes a major facilitator pump which exports L-arabinose and isopropyl-β-D-thiogalactopyranoside. J. Bacteriol. 181: 5123-5125.

Carter, E.L., L. Jager, L. Gardner, C.C. Hall, S. Willis, and J.M. Green. (2007). Escherichia coli abg genes enable uptake and cleavage of the folate catabolite p-aminobenzoyl-glutamate. J. Bacteriol. 189: 3329-3334.

Cartier, E.A., L.A. Parra, T.B. Baust, M. Quiroz, G. Salazar, V. Faundez, L. Egaña, and G.E. Torres. (2010). A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J. Biol. Chem. 285: 1957-1966.

Cecchetto, G., S. Amillis, G. Diallinas, C. Scazzocchio, and C. Drevet. (2004). The AzgA purine transporter of Aspergillus nidulans: characterization of a protein belonging to a new phylogenetic cluster. J. Biol. Chem. 279: 3132-3141.

Cesareo, R., M. Iozzino, D. Alva, C. Napolitano, B. De Rosa, S. Contini, L. Mallardo, A. Lauria, G. Reda, and A. Orsini. (2007). Evidence based medicine and effective interventions of pharmacological therapy for the prevention of osteoporotic fractures. Minerva Endocrinol 32: 275-295.

Chahine, S. and M.J. O'Donnell. (2010). Effects of acute or chronic exposure to dietary organic anions on secretion of methotrexate and salicylate by Malpighian tubules of Drosophila melanogaster larvae. Arch Insect Biochem Physiol 73: 128-147.

Chahine, S., A. Campos, and M.J. O''Donnell. (2012). Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster. J Exp Biol 215: 2601-2610.

Chahine, S., S. Seabrooke, and M.J. O''Donnell. (2012). Effects of genetic knock-down of organic anion transporter genes on secretion of fluorescent organic ions by Malpighian tubules of Drosophila melanogaster. Arch Insect Biochem Physiol 81: 228-240.

Chaillou, S., Y.C. Bor, C.A. Batt, P.W. Postma, and P.H. Pouwels. (1998). Molecular cloning and functional expression in Lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis. Appl. Environ. Microbiol. 64: 4720-4728.

Chang, H.-K. and G.J. Zylstra. (1999). Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J. Bacteriol. 181: 6197-6199.

Chang, Y.C., M.J. Tsai, Y.W. Huang, T.C. Chung, and T.C. Yang. (2011). SmQnrR, a DeoR-type transcriptional regulator, negatively regulates the expression of Smqnr and SmtcrA in Stenotrophomonas maltophilia. J Antimicrob Chemother 66: 1024-1028.

Chardwiriyapreecha, S., M. Shimazu, T. Morita, T. Sekito, K. Akiyama, K. Takegawa, and Y. Kakinuma. (2008). Identification of the fnx1(+) and fnx2(+) genes for vacuolar amino acid transporters in Schizosaccharomyces pombe. FEBS Lett. 582: 2225-2230.

Chaudhary, N., I. Kumari, P. Sandhu, M. Ahmed, and Y. Akhter. (2016). Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking. Gene. [Epub: Ahead of Print]

Chaudhary, N., P. Sandhu, M. Ahmed, and Y. Akhter. (2016). Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum. Int J Biol Macromol. [Epub: Ahead of Print]

Chen, D.E., S. Podell, J.D. Sauer, M.S. Swanson, and M.H. Saier. (2008). The phagosomal nutrient transporter (Pht) family. Microbiology. 154: 42-53.

Chen, S.Y., C.J. Pan, K. Nandigama, B.C. Mansfield, S.V. Ambudkar, and J.Y. Chou. (2008). The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J. 22: 2206-2213.

Cheng, Q. and J.T. Park. (2002). Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J. Bacteriol. 184: 6434-6436.

Cho, Y.-H., E.-J. Kim, H.-J. Chung, J.-H. Choi, K.F. Chater, B.-E. Ahn, J.-H. Shin, and Y.-H. Roe. (2003). The pqrAB operon is responsible for paraquat resistance in Streptomyces coelicolor. J. Bacteriol. 185: 6756-6763.

Choquer, M., M.H. Lee, H.J. Bau, and K.R. Chung. (2007). Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett. 581: 489-494.

Chou, J.Y. and B.C. Mansfield. (2014). The SLC37 family of sugar-phosphate/phosphate exchangers. Curr Top Membr 73: 357-382.

Christensen, M., T. Borza, G. Dandanell, A.-M. Gilles, O. Barzu, R.A. Kelln, and J. Neuhard. (2003). Regulation of expression of the 2-deoxy-D-ribose utilization regulon, deoQKPX, from Salmonella enterica serovar typhimurium. J. Bacteriol. 185: 6042-6050.

Clark, T.J., C. Momany, and E.L. Neidle. (2002). The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. strain ADP1. Microbiology 148: 1213-1223.

Clegg, S., F. Yu, L. Griffiths, and J.A. Cole. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44: 143-155.

Clegg, S.J., W. Jia, and J.A. Cole. (2006). Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth. Microbiology 152: 2091-2100.

Cliburn, R.A., A.R. Dunn, K.A. Stout, C.A. Hoffman, K.M. Lohr, A.I. Bernstein, E.J. Winokur, J. Burkett, Y. Shmitz, W.M. Caudle, and G.W. Miller. (2016). Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. J Chem Neuroanat. [Epub: Ahead of Print]

Collier, L.S., N.N. Nichols, and E.L. Neidle. (1997). benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J. Bacteriol. 179: 5943-5946.

Condemine, G. (2000). Characterization of SotA and SotB, two Erwinia chrysanthemi proteins which modify isopropyl-β-D-thiogalactopyranoside and lactose induction of the Escherichia coli lac promoter. J. Bacteriol. 182: 1340-1345.

Cooper, G.J., B. Leighton, A.C. Willis, and A.J. Day. (1989). The amylin superfamily: a novel grouping of biologically active polypeptides related to the insulin A-chain. Prog Growth Factor Res 1: 99-105.

Coucke, P.J., A. Willaert, M.W. Wessels, B. Callewaert, N. Zoppi, J. De Backer, J.E. Fox, G.M. Mancini, M. Kambouris, R. Gardella, F. Facchetti, P.J. Willems, R. Forsyth, H.C. Dietz, S. Barlati, M. Colombi, B. Loeys, and A. De Paepe. (2006). Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 38: 452-457.

Courville, P., M. Quick, and R.J. Reimer. (2010). Structure-function studies of the SLC17 transporter sialin identify crucial residues and substrate-induced conformational changes. J. Biol. Chem. 285: 19316-19323.

Crouch, M.L., M. Castor, J.E. Karlinsey, T. Kalhorn, and F.C. Fang (2008). Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67: 971-983.

Cui, H., L. Li, W. Wang, J. Shen, Z. Yue, X. Zheng, X. Zuo, B. Liang, M. Gao, X. Fan, X. Yin, C. Shen, C. Yang, C. Zhang, X. Zhang, Y. Sheng, J. Gao, Z. Zhu, D. Lin, A. Zhang, Z. Wang, S. Liu, L. Sun, S. Yang, Y. Cui, and X. Zhang. (2014). Exome sequencing identifies SLC17A9 pathogenic gene in two Chinese pedigrees with disseminated superficial actinic porokeratosis. J Med Genet 51: 699-704.

Cuív, P.O., P. Clarke, D. Lynch, and M. O'Connell. (2004). Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J. Bacteriol. 186: 2996-3005.

Cunningham P. and Naftalin RJ. (2014). Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion. J Membr Biol. 247(11):1161-79.

Cunningham, P., Afzal-Ahmed, I., and Naftalin, R.J. (2006). Docking studies show that D-glucose and quercetin slide through the transporter GLUT1. J. Biol. Chem. 281: 5797-5803.

Cura, A.J. and A. Carruthers. (2010). Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J. Biol. Chem. 285: 15430-15439.

Cushion, M.T., M.S. Collins, T. Sesterhenn, A. Porollo, A.K. Vadukoot, and E.J. Merino. (2016). Functional Characterization of Pneumocystis carinii Inositol Transporter 1. MBio 7:.

Czeredys, M., L. Samluk, K. Michalec, K. Tułodziecka, K. Skowronek, and K.A. Nałęcz. (2013). Caveolin-1 - a novel interacting partner of organic cation/carnitine transporter (octn2): effect of protein kinase C on this interaction in rat astrocytes. PLoS One 8: e82105.

D'Argenio, D.A., A. Segura, W.M. Coco, P.V. Bünz, and L.N. Ornston. (1999). The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J. Bacteriol. 181: 3505-3515.

Dahlin, A., E. Geier, S.L. Stocker, C.D. Cropp, E. Grigorenko, M. Bloomer, J. Siegenthaler, L. Xu, A.S. Basile, D.D. Tang-Liu, and K.M. Giacomini. (2013). Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures. Mol Pharm 10: 650-663.

Dakal, T.C., R. Kumar, and D. Ramotar. (2017). Structural modeling of human organic cation transporters. Comput Biol Chem 68: 153-163. [Epub: Ahead of Print]

Dang, S., L. Sun, Y. Huang, F. Lu, Y. Liu, H. Gong, J. Wang, and N. Yan. (2010). Structure of a fucose transporter in an outward-open conformation. Nature 467: 734-738.

Darley, P.I., J.A. Hellstern, J.I. Medina-Bellver, S. Marqués, B. Schink, and B. Philipp. (2007). Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius. J. Bacteriol. 189: 3824-3833.

Date, S.S., C.Y. Chen, Y. Chen, and M. Jansen. (2016). Experimentally optimized threading structures of the proton-coupled folate transporter. FEBS Open Bio 6: 216-230.

De Zutter JK., Levine KB., Deng D. and Carruthers A. (2013). Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J Biol Chem. 288(28):20734-44.

Deng, D., P. Sun, C. Yan, M. Ke, X. Jiang, L. Xiong, W. Ren, K. Hirata, M. Yamamoto, S. Fan, and N. Yan. (2015). Molecular basis of ligand recognition and transport by glucose transporters. Nature 526: 391-396.

Di Daniel, E., M.H. Mok, E. Mead, C. Mutinelli, E. Zambello, L.L. Caberlotto, T.J. Pell, C.J. Langmead, A.J. Shah, G. Duddy, J.N. Kew, and P.R. Maycox. (2009). Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC Cell Biol 10: 54.

Diallinas, G. (2017). Transceptors as a functional link of transporters and receptors. Microb Cell 4: 69-73.

Díaz, E., A. Ferrández, and J.L. García. (1998). Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180: 2915-2923.

Dietvorst, J., J. Londesborough, and H.Y. Steensma. (2005). Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22: 775-788.

Dietvorst, J., K. Karhumaa, M.C. Kielland-Brandt, and A. Brandt. (2010). Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Yeast 27: 131-138.

Diezemann, A. and E. Boles. (2003). Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr. Genet. 43: 281-288.

Divito, C.B., K. Steece-Collier, D.T. Case, S.P. Williams, J.A. Stancati, L. Zhi, M.E. Rubio, C.E. Sortwell, T.J. Collier, D. Sulzer, R.H. Edwards, H. Zhang, and R.P. Seal. (2015). Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson''s Disease. J. Neurosci. 35: 14983-14999.

Doege, H., A. Schürmann, G. Bahrenberg, A. Brauers, and H.G. Joost. (2000). GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol. Chem. 275: 16275-16280.

Dowhan, W. and M. Bogdanov. (2011). Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 39: 767-774.

Duan, P., J. Wu, and G. You. (2011). Mutational analysis of the role of GXXXG motif in the function of human organic anion transporter 1 (hOAT1). Int J Biochem Mol Biol 2: 1-7.

Duffy, S.P., J. Shing, P. Saraon, L.C. Berger, M.V. Eiden, A. Wilde, and C.S. Tailor. (2010). The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol. Cell Biol. 30: 5318-5324.

Eames, M. and T. Kortemme. (2012). Cost-benefit tradeoffs in engineered lac operons. Science 336: 911-915.

Egenberger B., Gorboulev V., Keller T., Gorbunov D., Gottlieb N., Geiger D., Mueller TD. and Koepsell H. (2012). A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1. J Biol Chem. 287(37):31561-73.

Ekici, S., H. Yang, H.G. Koch, and F. Daldal. (2012). Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. MBio 3:.

Elkins, C.A. and D.C. Savage. (1998). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180: 4344-4349.

Elkins, C.A. and L.B. Mullis. (2006). Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J. Bacteriol. 188: 1191-1195.

Enomoto, A., H. Kumura, A. Chairoungdua, Y. Shigeta, P. Jutabha, S.H. Cha, M. Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimokata, T. Niwa, Y. Kanai, and H. Endou. (2002). Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417: 447-450.

Enomoto, A., M.F. Wempe, H. Tsuchida, H.J. Shin, S.H. Cha, N. Anzai, A. Goto, A. Sakamoto, T. Niwa, Y. Kanai, M.W. Anders, and H. Endou. (2002). Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J. Biol. Chem. 277: 36262-36271.

Eraly, S.A., B.A. Hamilton, and S.K. Nigam. (2003). Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem. Biophys. Res. Commun. 300: 333-342.

Eraly, S.A., J.C. Monte, and S.K. Nigam. (2004). Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics 18: 12-24.

Eraly, S.A., K.T. Bush, R.V. Sampogna, V. Bhatnagar, and S.K. Nigam. (2003). The molecular biology of organic anion transporters: from DNA to FDA? Mol. Pharmacol. in press.

Eraly, S.A., V. Vallon, T. Rieg, J.A. Gangoiti, W.R. Wikoff, G. Siuzdak, B.A. Barshop, and S.K. Nigam. (2008). Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics 33: 180-192.

Erb, R.W., K.N. Timmis, and D.H. Pieper DH. (1998). Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone. Gene. 206: 53-62.

Erickson, J.D., M.K. Schafer, T.I. Bonner, L.E. Eiden, and E. Weihe. (1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 93: 5166-5171.

Ernst, C.M., P. Staubitz, N.N. Mishra, S.J. Yang, G. Hornig, H. Kalbacher, A.S. Bayer, D. Kraus, and A. Peschel. (2009). The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5: e1000660.

Ernst, C.M., S. Kuhn, C.J. Slavetinsky, B. Krismer, S. Heilbronner, C. Gekeler, D. Kraus, S. Wagner, and A. Peschel. (2015). The lipid-modifying multiple Peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits. MBio 6:.

Erro, R., K.P. Bhatia, A.J. Espay, and P. Striano. (2017). The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord. [Epub: Ahead of Print]

Evers, M.E., H. Trip, M.A. van den Berg, R.A. Bovenberg, and A.J. Driessen. (2004). Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88: 111-135.

Fàbrega, A., R.G. Martin, J.L. Rosner, M.M. Tavio, and J. Vila. (2010). Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Antimicrob. Agents Chemother. 54: 1218-1225.

Fang H., Wu Y., Guo J., Rong J., Ma L., Zhao Z., Zuo D. and Peng S. (2012). T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway. Apoptosis. 17(8):895-907.

Farrow, M.F. and E.J. Rubin. (2008). Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J. Bacteriol. 190: 1783-1791.

Farsi, Z., J. Preobraschenski, G. van den Bogaart, D. Riedel, R. Jahn, and A. Woehler. (2016). Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 351: 981-984.

Farwick, A., S. Bruder, V. Schadeweg, M. Oreb, and E. Boles. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA 111: 5159-5164.

Fei, H., T. Karnezis, R.J. Reimer, and D.E. Krantz. (2007). Membrane topology of the Drosophila vesicular glutamate transporter. J Neurochem 101: 1662-1671.

Fernandez-Aguado M., Martin JF., Rodriguez-Castro R., Garcia-Estrada C., Albillos SM., Teijeira F. and Ullan RV. (2014). New insights into the isopenicillin N transport in Penicillium chrysogenum. Metab Eng. 22:89-103.

Fernández-Aguado, M., R.V. Ullán, F. Teijeira, R. Rodríguez-Castro, and J.F. Martín. (2013). The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 97: 3073-3084.

Ferreira, C., F. van Voorst, A. Martins, L. Neves, R. Oliveira, M.C. Kielland-Brandt, C. Lucas, and A. Brandt. (2005). A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol. Biol. Cell 16: 2068-2076.

Ferreira, M.J. and I. Sá-Nogueira. (2010). A multitask ATPase serving different ABC-type sugar importers in Bacillus subtilis. J. Bacteriol. 192: 5312-5318.

Filippo, C.A., O. Ardon, and N. Longo. (2011). Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency. Biochim. Biophys. Acta. 1812: 312-320.

Fiorentino, G., R. Ronca, R. Cannio, M. Rossi, and S. Bartolucci. (2007). MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus. J. Bacteriol. 189: 7351-7360.

Fisel P., Stuhler V., Bedke J., Winter S., Rausch S., Hennenlotter J., Nies AT., Stenzl A., Scharpf M., Fend F., Kruck S., Schwab M. and Schaeffeler E. (2015). MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma. Oncotarget. 6(31):30615-27.

Floyd, J.L., K.P. Smith, S.H. Kumar, J.T. Floyd, and M.F. Varela. (2010). LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother. 54: 5406-5412.

Fluman, N., D. Cohen-Karni, T. Weiss, and E. Bibi. (2009). A promiscuous conformational switch in the secondary multidrug transporter MdfA. J. Biol. Chem. 284: 32296-32304.

Fomenko, D.E., A.Z. Metlitskaya, J. Péduzzi, C. Goulard, G.S. Katrukha, L.V. Gening, S. Rebuffat, and I.A. Khmel. (2003). Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob. Agents Chemother. 47: 2868-2874.

Fonseca, M.V., J.D. Sauer, S. Crepin, B. Byrne, and M.S. Swanson. (2014). The phtC-phtD locus equips Legionella pneumophila for thymidine salvage and replication in macrophages. Infect. Immun. 82: 720-730.

Forment, J.V., M. Flipphi, D. Ramón, L. Ventura, and A.P. Maccabe. (2006). Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J. Biol. Chem. 281: 8339-8346.

Franza, T., B. Mahé, and D. Expert. (2005). Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol. Microbiol. 55: 261-275.

Friesema, E.C.H., S. Ganguly, A. Abdalla, J.E. Manning Fox, A.P. Halestrap, and T.J. Visser. (2003). Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278: 40128-40135.

Frohlich, K.M. and J.P. Audia. (2013). Dual mechanisms of metabolite acquisition by the obligate intracytosolic pathogen Rickettsia prowazekii reveal novel aspects of triose phosphate transport. J. Bacteriol. 195: 3752-3760.

Fu, D. and P.C. Maloney. (1998). Structure-function relationships in OxlT, the oxalate/formate transporter of Oxalobacter formigenes. Topological features of transmembrane helix 11 as visualized by site-directed fluorescent labeling. J. Biol. Chem. 273: 17962-17967.

Fu, D., R.I. Sarker, K. Abe, E. Bolton, and P.C. Maloney. (2001). Structure/function relationships in OxlT, the oxalate-formate transporter of oxalobacter formigenes. Assignment of transmembrane helix 11 to the translocation pathway. J. Biol. Chem. 276: 8753-8760.

Fujisaki, S., S. Ohnuma, T. Horiuchi, I. Takahashi, S. Tsukui, Y. Nishimura, T. Nishino, M. Kitabatake, and H. Inokuchi. (1996). Cloning of a gene from Escherichia coli that confers resistance to fosmidomycin as a consequence of amplification. Gene 175: 83-87.

Fukuda, M., H. Takeda, H.E. Kato, S. Doki, K. Ito, A.D. Maturana, R. Ishitani, and O. Nureki. (2015). Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK. Nat Commun 6: 7097.

Fukuhara, S., S. Simmons, S. Kawamura, A. Inoue, Y. Orba, T. Tokudome, Y. Sunden, Y. Arai, K. Moriwaki, J. Ishida, A. Uemura, H. Kiyonari, T. Abe, A. Fukamizu, M. Hirashima, H. Sawa, J. Aoki, M. Ishii, and N. Mochizuki. (2012). The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122: 1416-1426.

Furrer, J.L., D.N. Sanders, I.G. Hook-Barnard, and M.A. McIntosh. (2002). Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol. Microbiol. 44: 1225-1234.

Gaballa, A., M. Cao, and J.D. Helmann. (2003). Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology 149: 3413-3421.

Galazka, J.M., C. Tian, W.T. Beeson, B. Martinez, N.L. Glass, and J.H. Cate. (2010). Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86.

Ganapathy, M.E., W. Huang, D.P. Rajan, A.L. Carter, M. Sugawara, K. Iseki, F.H. Leibach, and V. Ganapathy. (2000). β-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem. 275: 1699-1707.

Gao, Z., L. Maurousset, R. Lemoine, S.D. Yoo, S. van Nocker, and W. Loescher. (2003). Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol. 131: 1566-1575.

Garcia, D.L. and J.P. Dillard. (2008). Mutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae. J. Bacteriol. 190: 3799-3807.

Garcia-Dominguez, M., L. Lopez-Maury, F.J. Florencio, and J.C. Reyes. (2000). A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 182: 1507-1514.

Gerin, I., M. Veiga-da-Cunha, Y. Achouri, J.F. Collet, and E.V. Schaftingen. (1999). Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. Fed. Euro. Biochem. 419: 235-238.

Ghssein, G., C. Brutesco, L. Ouerdane, C. Fojcik, A. Izaute, S. Wang, C. Hajjar, R. Lobinski, D. Lemaire, P. Richaud, R. Voulhoux, A. Espaillat, F. Cava, D. Pignol, E. Borezée-Durant, and P. Arnoux. (2016). Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352: 1105-1109.

Girin T., El-Kafafi el-S., Widiez T., Erban A., Hubberten HM., Kopka J., Hoefgen R., Gojon A. and Lepetit M. (2010). Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiol. 153(3):1250-60.

Goddard, A.D., J.W. Moir, D.J. Richardson, and S.J. Ferguson. (2008). Interdependence of two NarK domains in a fused nitrate/nitrite transporter. Mol. Microbiol. 70: 667-681.

Goffeau, A., J. Park, I.T. Paulsen, J.-L. Jonniaux, T. Dinh, P. Mordant, and M.H. Saier, Jr. (1997). Multidrug resistant transport proteins in yeast. Complete inventory and phylogenetic characterization of yeast open reading frames within the major facilitator superfamily. Yeast 13: 43-54.

Gonzalez, E., E. Flier, D. Molle, D. Accili, and T.E. McGraw. (2011). Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor. Proc. Natl. Acad. Sci. USA 108: 10162-10167.

González-Pasayo, R. and E. Martínez-Romero. (2000). Multiresistance genes of Rhizobium etli CFN42. Mol. Plant-Microbe Interact. 13: 572-577.

Gründemann, D., J. Babin-Ebell, F. Martel, N. Ording, A. Schmidt, and E. Schömig. (1997). Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J. Biol. Chem. 272: 10408-10413.

Gras, C., E. Herzog, G.C. Bellenchi, V. Bernard, P. Ravassard, M. Pohl, B. Gasnier, B. Giros, and S. El Mestikawy. (2002). A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22: 5442-5451.

Green, A.L., E.J. Anderson, and R.J. Brooker. (2000). A revised model for the structure and function of the lactose permease. J. Biol. Chem. 275: 23240-23246.

Griffith, J.K., D.H. Cuellar, C.A. Fordyce, K.G. Hutchings, and A.A. Mondragon. (1995). Structure and function of the class C tetracycline/H+ antiporter: three independent groups of phenotypes are conferred by TetA (C). Mol. Membr. Biol. 11: 271-277.

Griffith, J.K., M.E. Baker, D.A. Rouch, M.G.P. Page, R.A. Skurray, I.T. Paulsen, K.F. Chater, S.A. Baldwin, and P.J.F. Henderson. (1992). Membrane transport proteins: implications of sequence comparisons. Curr. Opin. Cell Biol. 4: 684-695.

Groeneweg S., Friesema EC., Kersseboom S., Klootwijk W., Visser WE., Peeters RP. and Visser TJ. (2014). The role of Arg445 and Asp498 in the human thyroid hormone transporter MCT8. Endocrinology. 155(2):618-26.

Gronskiy, S.V., N.P. Zakataeva, M.V. Vitushkina, L.R. Ptitsyn, I.B. Altman, A.E. Novikova, and V.A. Livshits. (2005). The yicM (nepI) gene of Escherichia coli encodes a major facilitator superfamily protein involved in efflux of purine ribonucleosides. FEMS Microbiol. Lett. 250: 39-47.

Großhennig, S., S.R. Schmidl, G. Schmeisky, J. Busse, and J. Stülke. (2013). Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect. Immun. 81: 896-904.

Gründling, A. and O. Schneewind. (2007). Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189: 2521-2530.

Guan, L., O. Mirza, G. Verner, S. Iwata, and H.R. Kaback. (2007). Structural determination of wild-type lactose permease. Proc. Natl. Acad. Sci. USA 104: 15294-15298.

Gutiérrez-Preciado, A., A.G. Torres, E. Merino, H.R. Bonomi, F.A. Goldbaum, and V.A. García-Angulo. (2015). Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. PLoS One 10: e0126124.

Halestrap, A.P. (2013). Monocarboxylic acid transport. Compr Physiol 3: 1611-1643.

Hamacher, T., J. Becker, M. Gárdonyi, B. Hahn-Hägerdal, and E. Boles. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.

Hanschmann EM., Godoy JR., Berndt C., Hudemann C. and Lillig CH. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 19(13):1539-605.

Harris, K.G. and C.B. Coyne. (2015). Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases. PLoS One 10: e0141383.

Harvat, E.M., Y.M. Zhang, C.V. Tran, Z. Zhang, M.W. Frank, C.O. Rock, and M.H. Saier, Jr. (2005). Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily. J. Biol. Chem. 280: 12028-12034.

Hassan, K.A., A.J. Brzoska, N.L. Wilson, B.A. Eijkelkamp, M.H. Brown, and I.T. Paulsen. (2011). Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J. Mol. Microbiol. Biotechnol. 20: 116-124.

Hassan, K.A., R.A. Skurray, and M.H. Brown. (2007). Transmembrane helix 12 of the Staphylococcus aureus multidrug transporter QacA lines the bivalent cationic drug binding pocket. J. Bacteriol. 189: 9131-9134.

Hawkins, A.C. and C.S. Harwood. (2002). Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol. 68: 968-972.

Hayashi, M., K. Tabata, M. Yagasaki, and Y. Yonetani. (2010). Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli. FEMS Microbiol. Lett. 304: 12-19.

Hayashi, T., Y. Tanaka, N. Sakai, U. Okada, M. Yao, N. Watanabe, T. Tamura, and I. Tanaka. (2013). SCO4008, a putative TetR transcriptional repressor from streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. J. Mol. Biol. 425: 3289-3300.

Heiland, S., N. Radovanovic, M. Höfer, J. Winderickx, and H. Lichtenberg. (2000). Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182: 2153-2162.

Hellborg, L., M. Woolfit, M. Arthursson-Hellborg, and J. Piskur. (2008). Complex evolution of the DAL5 transporter family. BMC Genomics 9: 164.

Hernández-Montalvo, V., F. Valle, F. Bolivar, and G. Gosset. (2001). Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl. Microbiol. Biotechnol. 57: 186-191.

Heuel, H., S. Turgut, K. Schmid, and J.W. Lengeler. (1997). Substrate recognition domains as revealed by active hybrids between D-arabinitol and ribitol transporters from Klebsiella pneumoniae. J. Bacteriol. 179: 6014-6019.

Heymann, J.A.W., R. Sarker, T. Hirai, D. Shi, J.L.S. Milne, P.C. Maloney, and S. Subramaniam. (2001). Projection structure and molecular architecture of OxlT, a bacterial membrane transporter. EMBO J. 20: 4408-4413.

Higgins, C.F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature 446: 749-757.

Hirabayashi, Y., K.H. Nomura, and K. Nomura. (2013). The acetyl-CoA transporter family SLC33. Mol Aspects Med 34: 586-589.

Hirai, T., J.A.W. Heymann, D. Shi, R. Sarker, P.C. Maloney, and S. Subramaniam. (2002). Three-dimensional structure of a bacterial oxalate transporter. Nature Struct. Biol. 9: 597-600.

Hirai, T., J.A.W. Heymann, P.C. Maloney, and S. Subramaniam. (2003). A structural model for 12-helix transporters belonging to the major facilitator superfamily. J. Bacteriol. 185: 1712-1718.

Hisano, Y., N. Kobayashi, A. Kawahara, A. Yamaguchi, and T. Nishi. (2011). The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J. Biol. Chem. 286: 1758-1766.

Hopkins AP., Hawkhead JA. and Thomas GH. (2013). Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-D-glycero-D-galactonononic acid by Escherichia coli K-12. FEMS Microbiol Lett. 347(1):14-22.

Horiba, N., S. Masuda, A. Takeuchi, D. Takeuchi, M. Okuda, and K. Inui. (2003). Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney. J. Biol. Chem. 278: 14669-14676.

Hoshino, H. (2012). Cellular Factors Involved in HTLV-1 Entry and Pathogenicit. Front Microbiol 3: 222.

Hosoyamada, M., K. Ichida, A. Enomoto, T. Hosoya, and H. Endou. (2004). Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol 15: 261-268.

Hosoyamada, M., T. Sekine, Y. Kanai, and H. Endou. (1999). Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276: F122-128.

Hu, Y., V. Fernández, and L. Ma. (2014). Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. Front Plant Sci 5: 360.

Huang, H.T., J.H. Leu, P.Y. Huang, and L.L. Chen. (2012). A putative cell surface receptor for white spot syndrome virus is a member of a transporter superfamily. PLoS One 7: e33216.

Huang, Y., M.J. Lemieux, J. Song, M. Auer, and D.N. Wang. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301: 616-620.

Hvorup, R.N. and M.H. Saier, Jr. (2002). Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology 148: 3760-3762.

Igarashi, K. and K. Kashiwagi. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem 48: 506-512.

Ikeda, M., Y. Mizuno, S. Awane, M. Hayashi, S. Mitsuhashi, and S. Takeno. (2011). Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 90: 1443-1451.

Inaoka, T., K. Takahashi, M. Ohnishi-Kameyama, M. Yoshida,and K. Ochi. (2003). Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278: 2169-2176.

Ingoglia F., Visigalli R., Rotoli BM., Barilli A., Riccardi B., Puccini P. and Dall'Asta V. (2016). Functional activity of L-carnitine transporters in human airway epithelial cells. Biochim Biophys Acta. 1858(2):210-9.

Inoue, K., Y. Nakai, S. Ueda, S. Kamigaso, K.Y. Ohta, M. Hatakeyama, Y. Hayashi, M. Otagiri, and H. Yuasa. (2008). Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G660-668.

Iserovich, P., D. Wang, L. Ma, H. Yang, F.A. Zuniga, J.M. Pascual, K. Kuang, D.C. De Vivo, and J. Fischbarg. (2002). Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer. J. Biol. Chem. 277: 30991-30997.

Isnardi, I., Y.S. Ng, I. Srdanovic, R. Motaghedi, S. Rudchenko, H. von Bernuth, S.Y. Zhang, A. Puel, E. Jouanguy, C. Picard, B.Z. Garty, Y. Camcioglu, R. Doffinger, D. Kumararatne, G. Davies, J.I. Gallin, S. Haraguchi, N.K. Day, J.L. Casanova, and E. Meffre. (2008). IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 29: 746-757.

Iwabuchi, T., and S. Harayama. (1997). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J. Bacteriol. 179: 6488-6494.

Jacobs, C., L. Huang, E. Bartowsky, S. Normark, and J.T. Park. (1994). Bacterial cell wall recycling provides cystolic muropeptides as effectors for β-lactamase induction. EMBO J. 13: 4684-4694.

Jansen, J., E.C. Friesema, M.H. Kester, C.E. Schwartz, and T.J. Visser. (2008). Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology 149(5): 2184-2190.

Jeanguenin, L., A. Lara-Núñez, D.A. Rodionov, A.L. Osterman, N.Y. Komarova, D. Rentsch, J.F. Gregory, 3rd, and A.D. Hanson. (2012). Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals. Funct Integr Genomics 12: 25-34.

Jensen, L.T., M. Ajua-Alemanji, and V. Cizewski Culotta. (2003). The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J. Biol. Chem. 278: 42036-42040.

Jia, W., N. Tovell, S. Clegg, M. Trimmer, and J. Cole. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417: 297-304.

Jiang, D., Y. Zhao, J. Fan, X. Liu, Y. Wu, W. Feng, and X.C. Zhang. (2014). Atomic resolution structure of the E. coli YajR transporter YAM domain. Biochem. Biophys. Res. Commun. 450: 929-935.

Jiang, D., Y. Zhao, X. Wang, J. Fan, J. Heng, X. Liu, W. Feng, X. Kang, B. Huang, J. Liu, and X.C. Zhang. (2013). Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc. Natl. Acad. Sci. USA 110: 14664-14669.

Jin, J., A.A. Guffanti, C. Beck, and T.A. Krulwich. (2001). Twelve-transmembrane-segment (TMS) version (*TMS VII-VIII) of the 14-TMS Tel(L) antibiotic resistance protein retains monovalent cation transport modes but lacks tetracycline efflux capacity. J. Bacteriol. 183: 2667-2671.

Jin, J., A.A. Guffanti, D.H. Bechhofer, and T.A. Krulwich. (2002). Tet(L) and Tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences in their efflux substrate and coupling ion preferences. J. Bacteriol. 184: 4722-4732.

Johannes, J., D. Braun, A. Kinne, D. Rathmann, J. Köhrle, and U. Schweizer. (2016). Few amino acid exchanges expand the substrate spectrum of monocarboxylate transporter 10. Mol Endocrinol me20161037. [Epub: Ahead of Print]

Johannes, J., R. Jayarama-Naidu, F. Meyer, E. Katrin Wirth, U. Schweizer, L. Schomburg, J. Köhrle, and K. Renko. (2016). Silychristin, a flavonolignan derived from the milk thistle is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology en20151933. [Epub: Ahead of Print]

Johansen, L.E., P. Nygaard, C. Lassen, Y. Agerso, and H.H. Saxild. (2003). Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J. Bacteriol. 185: 5200-5209.

Johansson, L. and G. Lidén. (2006). Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions. J Biotechnol 126: 528-545.

Johnston, M. (1999). Feasting, fasting and fermenting, glucose sensing in yeast and other cells. Trends Genet. 15: 29-33.

Jones, R.S. and M.E. Morris. (2016). Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin Pharmacol Ther 100: 454-463.

Joost, H.-G. and B. Thorens. (2001). The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 18: 247-256.

Juge, N., Y. Yoshida, S. Yatsushiro, H. Omote, and Y. Moriyama. (2006). Vesicular glutamate transporter contains two independent transport machineries. J. Biol. Chem. 281: 39499-39506.

Jutabha, P., Y. Kanai, M. Hosoyamada, A. Chairoungdua, D.K. Kim, Y. Iribe, E. Babu, J.Y. Kim, N. Anzai, V. Chatsudthipong, and H. Endou. (2003). Identification of a novel voltage-driven organic anion tansporter present at apical membrane of renal proximal tubule. J. Biol. Chem. 278: 27930-27938.

Jørgensen T.R., P.A. vanKuyk, B.R. Poulsen, G.J. Ruijter, J. Visser, J.J. Iversen. (2007). Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter. Microbiology. 153: 1963-1973.

Kaback, H.R. (2015). A chemiosmotic mechanism of symport. Proc. Natl. Acad. Sci. USA 112: 1259-1264.

Kaback, H.R. and J. Wu. (1997). From membrane to molecule to the third amino acid from the left with a membrane transport protein. Quart. Rev. Biophys. 30: 333-364.

Kaler, G., D.M. Truong, A. Khandelwal, M. Nagle, S.A. Eraly, P.W. Swaan, and S.K. Nigam. (2007). Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J. Biol. Chem. 282: 23841-23853.

Kanamori, A., J. Nakayama, M.N. Fukuda, W.B. Stallcup, K. Sasaki, M. Fukuda, and Y. Hirabayashi. (1997). Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: a putative acetyl-CoA transporter. Proc. Natl. Acad. Sci. USA 94: 2897-2902.

Kanamori, Y., A. Saito, Y. Hagiwara-Komoda, D. Tanaka, K. Mitsumasu, S. Kikuta, M. Watanabe, R. Cornette, T. Kikawada, and T. Okuda. (2010). The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem Mol Biol 40: 30-37.

Karimian, M. and L.N. Ornston. (1981). Participation of the β-ketoadipate transport system in chemotaxis. J Gen Microbiol 124: 25-28.

Kasahara, T. and M. Kasahara. (2010). Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7: a two-dimensional comprehensive study. J. Biol. Chem. 285: 26263-26268.

Kasahara, T., K. Shimogawara, and M. Kasahara. (2011). Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Biochemistry 50: 8674-8681.

Kasahara, T., M. Maeda, M. Ishiguro, and M. Kasahara. (2007). Identification by comprehensive chimeric analysis of a key residue responsible for high affinity glucose transport by yeast HXT2. J. Biol. Chem. 282: 13146-13150.

Kasho, V.N., I.N. Smirnova, and H.R. Kaback. (2006). Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. J. Mol. Biol. 358: 1060-1070.

Kaur, J. and A.K. Bachhawat. (2007). Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics 176: 877-890.

Kawahara, A., T. Nishi, Y. Hisano, H. Fukui, A. Yamaguchi, and N. Mochizuki. (2009). The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323: 524-527.

Kawano-Kawada M., Pongcharoen P., Kawahara R., Yasuda M., Yamasaki T., Akiyama K., Sekito T. and Kakinuma Y. (2016). Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 80(2):279-87.

Kaya A., Karakaya HC., Fomenko DE., Gladyshev VN. and Koc A. (2009). Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol. 29(13):3665-74.

Kayingo, G., A. Martins, R. Andrie, L. Neves, C. Lucas, and B. Wong. (2009). A permease encoded by STL1 is required for active glycerol uptake by Candida albicans. Microbiology 155: 1547-1557.

Kazakov, T., A. Metlitskaya, and K. Severinov. (2007). Amino acid residues required for maturation, cell uptake, and processing of translation inhibitor microcin C. J. Bacteriol. 189: 2114-2118.

Keates, R.A., D.E. Culham, Y.I. Vernikovska, A.J. Zuiani, J.M. Boggs, and J.M. Wood. (2010). Transmembrane helix I and periplasmic loop 1 of Escherichia coli ProP are involved in osmosensing and osmoprotectant transport. Biochemistry 49: 8847-8856.

Keel, S.B., R.T. Doty, Z. Yang, J.G. Quigley, J. Chen, S. Knoblaugh, P.D. Kingsley, I. De Domenico, M.B. Vaughn, J. Kaplan, J. Palis, and J.L. Abkowitz (2008). A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319: 825-828.

Kekuda, R., P.D. Prasad, X. Wu, H. Wang, Y.-J. Fei, F.H. Leibach, and V. Ganapathy. (1998). Cloning and functional characterization of a potential-sensitive polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem. 273: 15971-15979.

Kemp, B.J., D.L. Church, J. Hatzold, B. Conradt, and E.J. Lambie. (2009). Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 181: 581-591.

Khalfaoui-Hassani, B., A.F. Verissimo, H.G. Koch, and F. Daldal. (2016). Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA. MBio 7:.

Khan, A.A. and J.G. Quigley. (2011). Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta. 1813: 668-682.

Khan, A.A., T. Hanada, M. Mohseni, J.J. Jeong, L. Zeng, M. Gaetani, D. Li, B.C. Reed, D.W. Speicher, and A.H. Chishti. (2008). Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J. Biol. Chem. 283: 14600-14609.

Khare, P., A. Mulakaluri, and S.M. Parsons. (2010). Search for the acetylcholine and vesamicol binding sites in vesicular acetylcholine transporter: the region around the lumenal end of the transport channel. J Neurochem 115: 984-993.

Khlebnikov, A., K.A. Datsenko, T. Skaug, B.L. Wanner, and J.D. Keasling. (2001). Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147: 3241-3247.

Kikawada, T., A. Saito, Y. Kanamori, Y. Nakahara, K. Iwata, D. Tanaka, M. Watanabe, and T. Okuda. (2007). Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl. Acad. Sci. USA 104: 11585-11590.

Kim JY. and Kandror KV. (2012). The first luminal loop confers insulin responsiveness to glucose transporter 4. Mol Biol Cell. 23(5):910-7.

Kim M.G., F.A. Flomerfelt, K.N. Lee, C. Chen, R.H. Schwartz. (2000). A putative 12 transmembrane domain cotransporter expressed in thymic cortical epithelial cells. J. Immunol. 164:3185-3192.

Kim, O.B., H. Richter, T. Zaunmüller, S. Graf, and G. Unden. (2011). Role of secondary transporters and phosphotransferase systems in glucose transport by Oenococcus oeni. J. Bacteriol. 193: 6902-6911.

Kimura, Y., S. Ishida, H. Matoba, and N. Okahisa. (2004). A Myxococcus xanthus rppA-mmrA double mutant exhibits reduced uptake of amino acids and tolerance of some antimicrobials. FEMS Microbiol. Lett. 238: 145-150.

Kinne, A., G. Kleinau, C.S. Hoefig, A. Grüters, J. Köhrle, G. Krause, and U. Schweizer. (2010). Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J. Biol. Chem. 285: 28054-28063.

Kinne, A., R. Schülein, and G. Krause. (2011). Primary and secondary thyroid hormone transporters. Thyroid Res 4Suppl1: S7.

Kitagawa, W., S. Takami, K. Miyauchi, E. Masai, Y. Kamagata, J.M. Tiedje, and M. Fukuda. (2002). Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J. Bacteriol. 184: 509-518.

Klepek, Y.S., D. Geiger, R. Stadler, F. Klebl, L. Landouar-Arsivaud, R. Lemoine, R. Hedrich, and N. Sauer. (2005). Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose. Plant Cell 17: 204-218.

Koepsell, H. (1998). Organic cation transporters in intestine, kidney, liver, and brain. Annu. Rev. Physiol. 60: 243-266.

Koepsell, H. (2013). The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34: 413-435.

Koepsell, H., V. Gorboulev, and P. Arndt. (1999). Molecular pharmacology of organic cation transporters in kidney. J. Membr. Biol. 167: 103-117.

Kohyama, N., H. Shiokawa, M. Ohbayashi, Y. Kobayashi, and T. Yamamoto. (2013). Characterization of monocarboxylate transporter 6: expression in human intestine and transport of the antidiabetic drug nateglinide. Drug Metab Dispos 41: 1883-1887.

Koita, K. and C.V. Rao. (2012). Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. PLoS One 7: e43700.

Kong, K.F., A. Aguila, L. Schneper, and K. Mathee. (2010). Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP. BMC Microbiol 10: 328.

Kramer, W., H.J. Burger, W.J. Arion, D. Corsiero, F. Girbig, C. Weyland, H. Hemmerle, S. Petry, P. Habermann, and A. Herling. (1999). Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling. J. Biochem. 339: 629-638.

Krings, E., K. Krumbach, B. Bathe, R. Kelle, V.F. Wendisch, H. Sahm, and L. Eggeling. (2006). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J. Bacteriol. 188: 8054-8061.

Kroeger, J.K., K. Hassan, A. Vörös, R. Simm, M. Saidijam, K.E. Bettaney, A. Bechthold, I.T. Paulsen, P.J. Henderson, and A.B. Kolstø. (2015). Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2. Front Microbiol 6: 1063.

Kröger, C., J. Stolz, and T.M. Fuchs. (2010). myo-Inositol transport by Salmonella enterica serovar Typhimurium. Microbiology 156: 128-138.

Kulakova, A.N., L.A. Kulakov, N.V. Akulenko, V.N. Ksenzenko, J.T. Hamilton, and J.P. Quinn. (2001). Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. J. Bacteriol. 183: 3268-3275.

Kusuhara, H., T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S.H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. (1999). Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274: 13675-13680.

Langford, C.K., M.P. Kavanaugh, P.E. Stenberg, M.E. Drew, W. Zhang, and S.M. Landfear. (1995). Functional expression and subcellular localization of a high-Kmhexose transporter from Leishmania donovani. Biochemistry 34: 11814-11821.

Latunde-Dada, G.O., R.J. Simpson, and A.T. McKie. (2006). Recent advances in mammalian haem transport. Trends Biochem. Sci. 31: 182-188.

Laurent M., B. Aude and R. Cornelia. (2007). Ferripyochelin uptake genes are involved in pyochelin-mediated signaling in Pseudomonas aeruginosa. Microbiology 153: 1508-1518.

Law, C.J., P.C. Maloney, and D.N. Wang. (2008). Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62: 289-305.

Law, C.J., Q. Yang, C. Soudant, P.C. Maloney, and D.N. Wang. (2007). Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT. Biochemistry. 46: 12190-12197.

Lazard, M., S. Blanquet, P. Fisicaro, G. Labarraque, and P. Plateau. (2010). Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J. Biol. Chem. 285: 32029-32037.

Leach, L.H. and T.A. Lewis. (2006). Identification and characterization of Pseudomonas membrane transporters necessary for utilization of the siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Microbiology 152: 3157-3166.

Leandro, M.J., H. Sychrová, C. Prista, and M.C. Loureiro-Dias. (2011). The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology 157: 601-608.

Leandro, M.J., I. Spencer-Martins, and P. Gonçalves. (2008). The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154: 1646-1655.

Leandro, M.J., P. Gonçalves, and I. Spencer-Martins. (2006). Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem. J. 395: 543-549.

Lee, E.-H., C. Rouquette-Loughlin, J.P. Folster, and W.M. Shafer. (2003). FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185: 7145-7152.

Lee, E.H., S.A. Hill, R. Napier, and W.M. Shafer. (2006). Integration Host Factor is required for FarR repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Mol Microbiol. 60: 1381-1400.

Lee, L.F., Y.J. Chen, R. Kirby, C. Chen, and C.W. Chen. (2007). A multidrug efflux system is involved in colony growth in Streptomyces lividans. Microbiology. 153: 924-934.

Lei, M., Q. Cheng, Y. Zhao, T. Liu, X. Wang, Y. Deng, J. Yang, and Z. Zhang. (2012). [Expression and Its Clinical Significance of SLC22A18 in Non-small Cell Lung Cancer]. Zhongguo Fei Ai Za Zhi 15: 17-20.

Lelandais-Brière, C., M. Jovanovic, G.A. Torres, Y. Perrin, R. Lemoine, F. Corre-Menguy, and C. Hartmann. (2007). Disruption of AtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis. Plant J. 51: 154-164.

Lemieux, M.J. (2007). Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol. Membr. Biol. 24: 333-341.

Lemieux, M.J., Y. Huang, and d.a.N. Wang. (2005). Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J Electron Microsc (Tokyo) 54Suppl1: i43-46.

Lesuisse, E., M. Simon-Casteras, and P. Labbe. (1998). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144: 3455-3462.

Lewinson O., J. Adler, N. Sigal, E. Bibi. (2006). Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol. Microbiol. 61: 277-284.

Lewinson, O., and E. Bibi. (2001). Evidence for simultaneous binding of dissimilar substrates by the Escherichia coli multidrug transporter MdfA. Biochem. 40: 12612-12618.

Lewis, J.A., A.R. Horswill, B.E. Schwem, and J.C. Escalante-Semerena. (2004). The tricarballylate utilization (tcuRABC) genes of Salmonella enterica serovar Typhimurium LT2. J. Bacteriol. 186: 1629-1637.

Leyn, S.A., F. Gao, C. Yang, and D.A. Rodionov. (2012). N-acetylgalactosamine utilization pathway and regulon in proteobacteria: genomic reconstruction and experimental characterization in Shewanella. J. Biol. Chem. 287: 28047-28056.

Li H., Fan R., Li L., Wei B., Li G., Gu L., Wang X. and Zhang X. (2014). Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ. 37(7):1561-73.

Li, X., H. Yang, D. Zhang, X. Li, H. Yu, and Z. Shen. (2015). Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. J Ind Microbiol Biotechnol 42: 93-103.

Li, X.T., L.C. Thomason, J.A. Sawitzke, N. Costantino, and D.L. Court. (2013). Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res 41: e204.

Li, X.Z., L. Zhang, and H. Nikaido. (2004). Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48: 2415-2423.

Lin, Y., M. Bogdanov, S. Tong, Z. Guan, and L. Zheng. (2016). Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli. J. Biol. Chem. 291: 2136-2149.

Lindquist, S., K. Weston-Hafer, H. Schmidt, C. Pul, G. Korfmann, J. Erickson, C. Sanders, H.H. Martin, and S. Normark. (1993). AmpG, a single transducer in chromosomal β-lactamase induction. Mol. Microbiol. 9: 703-715.

Liu, H., Y. Wang, C. Wu, S. Schwarz, Z. Shen, B. Jeon, S. Ding, Q. Zhang, and J. Shen. (2012). A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother 67: 322-325.

Liu, J., W.K. Versaw, N. Pumplin, S.K. Gomez, L.A. Blaylock, and M.J. Harrison. (2008). Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J. Biol. Chem. 283: 24673-24681.

Liu, J.Y., P.F. Miller, J. Willard, and E.R. Olson. (1999). Functional and biochemical characterization of Escherichia coli sugar efflux transporters. J. Biol. Chem. 274: 22977-22984.

Liu, J.Y., P.F. Miller, M. Gosink, and E.R. Olson. (1999). The identification of a new family of sugar efflux pumps in Escherichia coli. Mol. Microbiol. 31: 1845-1851.

Liu, K.-H. and Y.-F. Tsay. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22: 1005-1013.

Liu, M., J. Liu, and W.M. Wang. (2012). Isolation and functional analysis of Thmfs1, the first major facilitator superfamily transporter from the biocontrol fungus Trichoderma harzianum. Biotechnol Lett 34: 1857-1862.

Liu, Y., D. Peter, A. Roghani, S. Schuldiner, G.G. Prive, D. Eisenberg, N. Brecha, and R.H. Edwards. (1992). A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70: 539-551.

Liu, Y., F. Liu, K. Iqbal, I. Grundke-Iqbal, and C.X. Gong. (2008). Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 582: 359-364.

Liu, Z., E. Boles, and B.P. Rosen. (2004). Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J. Biol. Chem. 279: 17312-17318.

Locher, K.P., R.B. Bass, and D.C. Rees. (2003). Breaching the barrier. Science 301: 603-604.

Lodder-Gadaczek, J., V. Gieselmann, and M. Eckhardt. (2013). Vesicular uptake of N-acetylaspartylglutamate is catalysed by sialin (SLC17A5). Biochem. J. 454: 31-38.

Lofthouse EM., Brooks S., Cleal JK., Hanson MA., Poore KR., O'Kelly IM. and Lewis RM. (2015). Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast. J Physiol. 593(20):4549-59.

Long, W., R. Panigrahi, P. Panwar, K. Wong, D. O Neill, X.Z. Chen, M.J. Lemieux, and C.I. Cheeseman. (2017). Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9). Sci Rep 7: 41167.

Lorca, G.L., R.D. Barabote, V. Zlotopolski, C. Tran, B. Winnen, R.N. Hvorup, A.J. Stonestrom, E. Nguyen, L.W. Huang, D.S. Kim, and M.H. Saier, Jr. (2007). Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim. Biophys. Acta. 1768: 1342-1366.

Ma, Y., J. Patel, and R.J. Parry. (2000). A novel valanimycin-resistance determinant (vlmF) from Streptomyces viridifaciens MG456-hF10. Microbiology 146(Pt2): 345-352.

MacMillan, S.V., D.A. Alexander, D.E. Culham, H.J. Kunte, E.V. Marshall, D. Rochon, and J.M. Wood. (1999). The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim. Biophys. Acta 1420: 30-44.

Madej, M.G., S.N. Soro, and H.R. Kaback. (2012). Apo-intermediate in the transport cycle of lactose permease (LacY). Proc. Natl. Acad. Sci. USA 109: E2970-2978.

Magalhães, F., V. Vidgren, L. Ruohonen, and B. Gibson. (2016). Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus. FEMS Yeast Res 16:.

Mallonee, D.H. and P.B. Hylemon. (1996). Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J. Bacteriol. 178: 7053-7058.

Mandal A., Kumar A., Singh A., Lynn AM., Kapoor K. and Prasad R. (2012). A key structural domain of the Candida albicans Mdr1 protein. Biochem J. 445(3):313-22.

Manel, N., F.J. Kim, S. Kinet, N. Taylor, M. Sitbon, and J.-L. Battini. (2003). The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115: 449-459.

Manolescu, A., A.M. Salas-Burgos, J. Fischbarg, and C.I. Cheeseman. (2005). Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J. Biol. Chem. 280: 42978-42983.

Mansfield, T.A., N.P. Schultes, and G.S. Mourad. (2009). AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis. FEBS Lett. 583: 481-486.

Marchi, E., T. Lodi, and C. Donnini. (2007). KNQ1, a Kluyveromyces lactis gene encoding a transmembrane protein, may be involved in iron homeostasis. FEMS Yeast Res 7: 715-721.

Mardones, L., V. Ormazabal, X. Romo, C. Jaña, P. Binder, E. Peña, M. Vergara, and F.A. Zúñiga. (2011). The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter. Biochem. Biophys. Res. Commun. 410: 7-12.

Marger, M.D. and M.H. Saier, Jr. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18: 13-20.

Mariotta L., Ramadan T., Singer D., Guetg A., Herzog B., Stoeger C., Palacin M., Lahoutte T., Camargo SM. and Verrey F. (2012). T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol. 590(Pt 24):6413-24.

Marklevitz, J. and L.K. Harris. (2016). Prediction driven functional annotation of hypothetical proteins in the major facilitator superfamily of S. aureus NCTC 8325. Bioinformation 12: 254-262.

Martín-Venegas, R., M.J. Rodríguez-Lagunas, P.A. Geraert, and R. Ferrer. (2007). Monocarboxylate transporter 1 mediates DL-2-Hydroxy-(4-methylthio)butanoic acid transport across the apical membrane of Caco-2 cell monolayers. J. Nutr. 137: 49-54.

Martin, V.J. and W.W. Mohn. (2000). Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol. 182: 3784-3793.

Martinez-Garriga, B., T. Vinuesa, J. Hernandez-Borrell, and M. Viñas. (2007). The contribution of efflux pumps to quinolone resistance in Streptococcus pneumoniae clinical isolates. Int. J. Med. Microbiol. 297: 187-195.

Martinez-Jéhanne, V., L. du Merle, C. Bernier-Fébreau, C. Usein, A. Gassama-Sow, A.A. Wane, M. Gouali, M. Damian, A. Aïdara-Kane, Y. Germani, A. Fontanet, B. Coddeville, Y. Guérardel, and C. Le Bouguénec. (2009). Role of deoxyribose catabolism in colonization of the murine intestine by pathogenic Escherichia coli strains. Infect. Immun. 77: 1442-1450.

Martinussen, J., C. Sørensen, C.B. Jendresen, and M. Kilstrup. (2010). Two nucleoside transporters in Lactococcus lactis with different substrate specificities. Microbiology 156: 3148-3157.

Maruyama, S.Y., M. Ito, Y. Ikami, Y. Okitsu, C. Ito, K. Toshimori, W. Fujii, and K. Yogo. (2016). A critical role of solute carrier 22a14 in sperm motility and male fertility in mice. Sci Rep 6: 36468.

Masureel M., Martens C., Stein RA., Mishra S., Ruysschaert JM., Mchaourab HS. and Govaerts C. (2014). Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem Biol. 10(2):149-55.

Matherly LH., Wilson MR. and Hou Z. (2014). The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos. 42(4):632-49.

Mathews EA., Mullen GP., Hodgkin J., Duerr JS. and Rand JB. (2012). Genetic interactions between UNC-17/VAChT and a novel transmembrane protein in Caenorhabditis elegans. Genetics. 192(4):1315-25.

Maulén, N.P., E.A. Henríquez, S. Kempe, J.G. Cárcamo, A. Schmid-Kotsas, M. Bachem, A. Grünert, M.E. Bustamante, F. Nualart, and J.C. Vera. (2003). Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. J. Biol. Chem. 278: 9035-9041.

McGee, S.L. and M. Hargreaves. (2006). Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol 33: 395-399.

Michel, L., A. Bachelard, and C. Reimmann. (2007). Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153: 1508-1518.

Miethke, M., S. Schmidt, and M.A. Marahiel. (2008). The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J. Bacteriol. 190: 5143-5152.

Miller, A.J., X. Fan, M. Orsel, S.J. Smith, and D.M. Wells. (2007). Nitrate transport and signalling. J Exp Bot 58: 2297-306.

Miura, D., N. Anzai, P. Jutabha, S. Chanluang, X. He, T. Fukutomi, and H. Endou. (2011). Human urate transporter 1 (hURAT1) mediates the transport of orotate. J. Physiol. Sci 61: 253-257.

Montel-Hagen, A., S. Kinet, N. Manel, C. Mongellaz, R. Prohaska, J.L. Battini, J. Delaunay, M. Sitbon, and N. Taylor. (2008). Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 132: 1039-1048.

Moore, R.E., Y. Kim, and C.C. Philpott. (2003). The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100: 5664-5669.

Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706.

Moraleda-Muñoz, A., J. Pérez, A.L. Extremera, and J. Muñoz-Dorado. (2010). Differential regulation of six heavy metal efflux systems in the response of Myxococcus xanthus to copper. Appl. Environ. Microbiol. 76: 6069-6076.

Morin, P., C. Sagné, and B. Gasnier. (2004). Functional characterization of wild-type and mutant human sialin. EMBO. J. 23: 4560-4570.

Morishita, M. and J. Engebrecht. (2008). Sorting signals within the Saccharomyces cerevisiae sporulation-specific dityrosine transporter, Dtr1p, C terminus promote Golgi-to-prospore membrane transport. Eukaryot. Cell. 7: 1674-1684.

Moschen I., Broer A., Galic S., Lang F. and Broer S. (2012). Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res. 37(11):2562-8.

Mueckler, M. and C. Makepeace. (2009). Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis. Biochemistry 48: 5934-5942.

Murphy, P.J., S.P. Trenz, W. Grzemski, F.J. De Bruijn, and J. Schell. (1993). The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation. J. Bacteriol. 175: 5193-5204.

Naftalin, R.J. (2008). Osmotic water transport with glucose in GLUT2 and SGLT. Biophys. J. 94: 3912-3923.

Nagakubo, S., K. Nishino, T. Hirata, and A. Yamaguchi. (2002). The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J. Bacteriol. 184: 4161-4167.

Nair, A.V., H. Singh, S. Raturi, A. Neuberger, Z. Tong, N. Ding, K. Agboh, and H.W. van Veen. (2016). Relocation of active site carboxylates in major facilitator superfamily multidrug transporter LmrP reveals plasticity in proton interactions. Sci Rep 6: 38052.

Nakano, Y., K. Fujitani, J. Kurihara, J. Ragan, K. Usui-Aoki, L. Shimoda, T. Lukacsovich, K. Suzuki, M. Sezaki, Y. Sano, R. Ueda, W. Awano, M. Kaneda, M. Umeda, and D. Yamamoto. (2001). Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol. Cell. Biol. 21: 3775-3788.

Nakata, T., T. Matsui, K. Kobayashi, Y. Kobayashi, and N. Anzai. (2013). Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 252: 212-221.

Nancolas, B., R.B. Sessions, and A.P. Halestrap. (2015). Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity. Biochem. J. 466: 177-188.

Naseer, N., J.A. Shapiro, and M. Chander. (2014). RNA-Seq analysis reveals a six-gene SoxR regulon in Streptomyces coelicolor. PLoS One 9: e106181.

Naula, C.M., F.M. Logan, P.E. Wong, M.P. Barrett, and R.J. Burchmore. (2010). A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter. J. Biol. Chem. 285: 29721-29728.

Nele Bourgeois, M.A., S.L. Van Herck, P. Vancamp, J. Delbaere, C. Zevenbergen, S. Kersseboom, V.M. Darras, and T.J. Visser. (2016). CHARACTERIZATION OF CHICKEN THYROID HORMONE TRANSPORTERS. Endocrinology en20152025. [Epub: Ahead of Print]

Nemoz, G., J. Robert-Baudouy, and F. Stoeber. (1976). Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli. J. Bacteriol. 127: 706-718.

Nesper, J., A. Brosig, P. Ringler, G.J. Patel, S.A. Müller, J.H. Kleinschmidt, W. Boos, K. Diederichs, and W. Welte. (2008). Omp85(Tt) from Thermus thermophilus HB27: an ancestral type of the Omp85 protein family. J. Bacteriol. 190: 4568-4575.

Ng, T.S., S.Y. Chew, P. Rangasamy, M.N. Mohd Desa, D. Sandai, P.P. Chong, and L.T. Than. (2015). SNF3 as High Affinity Glucose Sensor and Its Function in Supporting the Viability of Candida glabrata under Glucose-Limited Environment. Front Microbiol 6: 1334.

Nichols, N.N. and C.S. Harwood. (1997). PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 179: 5056-5061.

Nijnik, A., S. Clare, C. Hale, J. Chen, C. Raisen, L. Mottram, M. Lucas, J. Estabel, E. Ryder, H. Adissu, , N.C. Adams, R. Ramirez-Solis, J.K. White, K.P. Steel, G. Dougan, and R.E. Hancock. (2012). The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J Immunol 189: 102-111.

Nishino, K. and A. Yamaguchi. (2001). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812.

Niu, C., G.A. Payne, and C.P. Woloshuk. (2016). Involvement of FST1 from Fusarium verticillioides in virulence and transport of inositol. Mol Plant Pathol. [Epub: Ahead of Print]

Nobre, A., C. Lucas, and C. Leão. (1999). Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl. Environ. Microbiol. 65: 3594-3598.

Nomura N., Verdon G., Kang HJ., Shimamura T., Nomura Y., Sonoda Y., Hussien SA., Qureshi AA., Coincon M., Sato Y., Abe H., Nakada-Nakura Y., Hino T., Arakawa T., Kusano-Arai O., Iwanari H., Murata T., Kobayashi T., Hamakubo T., Kasahara M., Iwata S. and Drew D. (2015). Structure and mechanism of the mammalian fructose transporter GLUT5. Nature. 526(7573):397-401.

Norholm, M.H., H.H. Nour-Eldin, P. Brodersen, J. Mundy, and B.A. Halkier. (2006). Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett. 17: 2381-2387.

Nygaard, P. and H.H. Saxild. (2005). The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. J. Bacteriol. 187: 791-794.

Nørholm, M.H. and G. Dandanell. (2001). Specificity and topology of the Escherichia coli xanthosine permease, a representative of the NHS subfamily of the major facilitator superfamily. J. Bacteriol. 183: 4900-4904.

Oku, Y., K. Kurokawa, N. Ichihashi, and K. Sekimizu. (2004). Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150: 45-51.

Omote, H., T. Miyaji, N. Juge, and Y. Moriyama. (2011). Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry 50: 5558-5565.

Ostash, I., B. Ostash, A. Luzhetskyy, A. Bechthold, S. Walker, and V. Fedorenko. (2008). Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol. Lett. 285: 195-202.

Ovens, M.J., C. Manoharan, M.C. Wilson, C.M. Murray, and A.P. Halestrap. (2010). The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein. Biochem. J. 431: 217-225.

Ozcan, S. and M. Johnston. (1999). Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63: 554-569.

Périchon, B., P. Bogaerts, T. Lambert, L. Frangeul, P. Courvalin, and M. Galimand. (2008). Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob. Agents Chemother. 52: 2581-2592.

Périchon, B., P. Courvalin, and M. Galimand. (2007). Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51: 2464-2469.

Pamp, S.J., M. Gjermansen, H.K. Johansen, and T. Tolker-Nielsen. (2008). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 68: 223-240.

Pan PY., Marrs J. and Ryan TA. (2015). Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem. 290(37):22593-601.

Pan, C.J., S.Y. Chen, H.S. Jun, S.R. Lin, B.C. Mansfield, and J.Y. Chou. (2011). SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. PLoS One 6: e23157.

Pao, S.S., I.T. Paulsen, and M.H. Saier, Jr. (1998). The major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 1-32.

Parche, S., M. Beleut, E. Rezzonico, D. Jacobs, F. Arigoni, F. Titgemeyer, and I. Jankovic. (2006). Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J. Bacteriol. 188: 1260-1265.

Park, J.T., D. Raychaudhuri, H. Li, S. Normark, and D. Mengin-Lecreulx. (1998). MppA, a periplasmic binding protein essential for import of the bacterial cell wall peptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate. J. Bacteriol. 180: 1215-1223.

Park, T.J., J. Reznick, B.L. Peterson, G. Blass, D. Omerbašić, N.C. Bennett, P.H.J.L. Kuich, C. Zasada, B.M. Browe, W. Hamann, D.T. Applegate, M.H. Radke, T. Kosten, H. Lutermann, V. Gavaghan, O. Eigenbrod, V. Bégay, V.G. Amoroso, V. Govind, R.D. Minshall, E.S.J. Smith, J. Larson, M. Gotthardt, S. Kempa, and G.R. Lewin. (2017). Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356: 307-311.

Pascual, J.M., D. Wang, R. Yang, L. Shi, H. Yang, and D.C. De Vivo. (2008). Structural Signatures and Membrane Helix 4 in GLUT1: INFERENCES FROM HUMAN BLOOD-BRAIN GLUCOSE TRANSPORT MUTANTS. J. Biol. Chem. 283: 16732-16742.

Patching, S.G., G. Psakis, S.A. Baldwin, J. Baldwin, P.J. Henderson, and D.A. Middleton. (2008). Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR. Mol. Membr. Biol. 25: 474-484.

Patching, S.G., S.A. Baldwin, A.D. Baldwin, J.D. Young, M.P. Gallagher, P.J. Henderson, and R.B. Herbert. (2005). The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands. Org Biomol Chem 3: 462-470.

Patrick PS., Lyons SK., Rodrigues TB. and Brindle KM. (2014). Oatp1 enhances bioluminescence by acting as a plasma membrane transporter for D-luciferin. Mol Imaging Biol. 16(5):626-34.

Paul, S., K.O. Alegre, S.R. Holdsworth, M. Rice, J.A. Brown, P. McVeigh, S.M. Kelly, and C.J. Law. (2014). A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol. Microbiol. 92: 872-884.

Paulsen, I.T., M.H. Brown, and R.A. Skurray. (1996). Proton-dependent multidrug efflux systems. Microbiol. Rev. 60: 575-608.

Paulsen, I.T., S. Chauvaux, P. Choi, and M.H. Saier, Jr. (1998). Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter. J. Bacteriol. 180: 498-504.

Pavón, L.R., F. Lundh, B. Lundin, A. Mishra, B.L. Persson, and C. Spetea. (2008). Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli. J. Biol. Chem. 283: 13520-13527.

Pedersen, B.P., H. Kumar, A.B. Waight, A.J. Risenmay, Z. Roe-Zurz, B.H. Chau, A. Schlessinger, M. Bonomi, W. Harries, A. Sali, A.K. Johri, and R.M. Stroud. (2013). Crystal structure of a eukaryotic phosphate transporter. Nature 496: 533-536.

Peekhaus, N. and T. Conway. (1998). What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J. Bacteriol 180: 3495-3502.

Pelis, R.M., X. Zhang, Y. Dangprapai, and S.H. Wright. (2006). Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2. J. Biol. Chem. 281: 35272-35280.

Pellizzaro A., Clochard T., Planchet E., Limami AM. and Morere-Le Paven MC. (2015). Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families. Physiol Plant. 154(2):256-69.

Pendse, P.Y., B.R. Brooks, and J.B. Klauda. (2010). Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. J. Mol. Biol. 404: 506-521.

Peng, Y., S. Kumar, R.L. Hernandez, S.E. Jones, K.M. Cadle, K.P. Smith, and M.F. Varela. (2009). Evidence for the transport of maltose by the sucrose permease, CscB, of Escherichia coli. J. Membr. Biol. 228: 79-88.

Pereira, C.A. and A.M. Silber. (2012). On the evolution of hexose transporters in kinetoplastid potozoans. PLoS One 7: e36303.

Perland, E., S.V. Hellsten, E. Lekholm, M.M. Eriksson, V. Arapi, and R. Fredriksson. (2016). The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. [Epub: Ahead of Print]

Perry, J.L., N. Dembla-Rajpal, L.A. Hall, and J.B. Pritchard. (2006). A three-dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport. J. Biol. Chem. 281: 38071-38079.

Persson, B.L., A. Berhe, U. Fristedt, P. Martinez, J. Pattison, J. Petersson, and R. Weinander. (1998). Phosphate permeases of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1365: 23-30.

Persson, B.L., J. Petersson, U. Fristedt, R. Weinander, A. Berhe, and J. Pattison. (1999). Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422: 255-272.

Philip, M., S.A. Funkhouser, E.Y. Chiu, S.R. Phelps, J.J. Delrow, J. Cox, P.J. Fink, and J.L. Abkowitz. (2015). Heme Exporter FLVCR Is Required for T Cell Development and Peripheral Survival. J Immunol 194: 1677-1685.

Pietrancosta, N., C. Anne, H. Prescher, R. Ruivo, C. Sagné, C. Debacker, H.O. Bertrand, R. Brossmer, F. Acher, and B. Gasnier. (2012). Successful prediction of substrate-binding pocket in SLC17 transporter sialin. J. Biol. Chem. 287: 11489-11497.

Pimentel-Schmitt, E.F., K. Jahreis, M.P. Eddy, J. Amon, A. Burkovski, and F. Titgemeyer. (2009). Identification of a glucose permease from Mycobacterium smegmatis mc2 155. J. Mol. Microbiol. Biotechnol. 16: 169-175.

Pina, C., P. Goncalves, C. Prista, and M.C. Loureiro-Dias. (2004). Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150: 2429-2433.

Plourde-Owobi, L., S. Durner, J.L. Parrou, R. Wieczorke, G. Goma, and J. François. (1999). AGT1, encoding an α-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 181: 3830-3832.

Pochini, L., M. Scalise, M. Galluccio, and C. Indiveri. (2013). OCTN cation transporters in health and disease: role as drug targets and assay development. J Biomol Screen 18: 851-867.

Pochini, L., M. Scalise, S. Di Silvestre, S. Belviso, A. Pandolfi, A. Arduini, M. Bonomini, and C. Indiveri. (2015). Acetylcholine and acetylcarnitine transport in peritoneum: role of the SLC22A4 (OCTN1) transporter. Biochim. Biophys. Acta. [Epub: Ahead of Print]

Prestin, K., S. Wolf, R. Feldtmann, J. Hussner, I. Geissler, C. Rimmbach, H.K. Kroemer, U. Zimmermann, and H.E. Meyer zu Schwabedissen. (2014). Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am. J. Physiol. Renal Physiol 307: F1041-1051.

Price, D.R., H.S. Wilkinson, and J.A. Gatehouse. (2007). Functional expression and characterisation of a gut facilitative glucose transporter, NlHT1, from the phloem-feeding insect Nilaparvata lugens (rice brown planthopper). Insect Biochem Mol Biol 37: 1138-1148.

Psakis, G., M. Saidijam, K. Shibayama, J. Polaczek, K.E. Bettaney, J.M. Baldwin, S.A. Baldwin, R. Hope, L.O. Essen, R.C. Essenberg, and P.J. Henderson. (2009). The sodium-dependent D-glucose transport protein of Helicobacter pylori. Mol. Microbiol. 71: 391-403.

Qin, L., X. Liu, Q. Sun, Z. Fan, D. Xia, G. Ding, H.L. Ong, D. Adams, W.A. Gahl, C. Zheng, S. Qi, L. Jin, C. Zhang, L. Gu, J. He, D. Deng, I.S. Ambudkar, and S. Wang. (2012). Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 109: 13434-13439.

Qiu, A., M. Jansen, A. Sakaris, S.H. Min, S. Chattopadhyay, E. Tsai, C. Sandoval, R. Zhao, M.H. Akabas, and I.D. Goldman. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127: 917-928.

Quistgaard, E.M., C. Löw, P. Moberg, and P. Nordlund. (2013). Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms. J Struct Biol 184: 375-378.

Radestock, S. and L.R. Forrest. (2011). The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J. Mol. Biol. 407: 698-715.

Rajamohan, G., V.B. Srinivasan, and W.A. Gebreyes. (2010). Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J Antimicrob Chemother 65: 1919-1925.

Ramìrez, S., R. Moreno, O. Zafra, P. Castàn, C. Vallès, and J. Berenguer. (2000). Two nitrate/nitrite transporters are encoded within the mobilizable plasmid for nitrate respiration of Thermus thermophilus HB8. J. Bacteriol. 182: 2179-2183.

Ramon-Garcia S., Martin C., Thompson CJ. and Ainsa JA. (2009). Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother. 53(9):3675-82.

Rani, M., S. Raj, V. Dayaman, M. Kumar, M. Dua, and A.K. Johri. (2016). Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica. Front Microbiol 7: 1083.

Rappold, P.M., M. Cui, A.S. Chesser, J. Tibbett, J.C. Grima, L. Duan, N. Sen, J.A. Javitch, and K. Tieu. (2011). Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl. Acad. Sci. USA 108: 20766-20771.

Raymond-Bouchard I., Carroll CS., Nesbitt JR., Henry KA., Pinto LJ., Moinzadeh M., Scott JK. and Moore MM. (2012). Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. Eukaryot Cell. 11(11):1333-44.

Reihl, P. and J. Stolz. (2005). The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J. Biol. Chem. 280: 39809-39817.

Reinders, A., J.A. Panshyshyn, and J.M. Ward. (2005). Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5. J. Biol. Chem. 280: 1594-1602.

Remy, E., T.R. Cabrito, R.A. Batista, M.A. Hussein, M.C. Teixeira, A. Athanasiadis, I. Sá-Correia, and P. Duque. (2014). Intron retention in the 5''UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in arabidopsis. PLoS Genet 10: e1004375.

Ren F., Zhao CZ., Liu CS., Huang KL., Guo QQ., Chang LL., Xiong H. and Li XB. (2014). A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Plant Mol Biol. 86(6):595-607.

Reynes, J.P., T. Calmels, D. Drocourt, and G. Tiraby. (1988). Cloning, expression in Escherichia coli and nucleotide sequence of a tetracycline-resistance gene from Streptomyces rimosus. J. Gen. Microbiol. 134: 585-598.

Rizwan, A.N., W. Krick, G. Burckhardt. (2007). The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J. Biol. Chem. 282: 13402-13409.

Roca, I., S. Marti, P. Espinal, P. Martínez, I. Gibert, and J. Vila. (2009). CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53: 4013-4014.

Rodionov, D.A., A.G. Vitreschak, A.A. Mironov, and M.S. Gelfand. (2002). Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol. Chem. 277: 48949-48959.

Rodionov, D.A., C. Yang, X. Li, I.A. Rodionova, Y. Wang, A.Y. Obraztsova, O.P. Zagnitko, R. Overbeek, M.F. Romine, S. Reed, J.K. Fredrickson, K.H. Nealson, and A.L. Osterman. (2010). Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics 11: 494.

Rodionov, D.A., P. Hebbeln, A. Eudes, J. ter Beek, I.A. Rodionova, G.B. Erkens, D.J. Slotboom, M.S. Gelfand, A.L. Osterman, A.D. Hanson, and T. Eitinger. (2009). A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191: 42-51.

Rodionov, D.A., X. Li, I.A. Rodionova, C. Yang, L. Sorci, E. Dervyn, D. Martynowski, H. Zhang, M.S. Gelfand, and A.L. Osterman. (2008). Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 36: 2032-2046.

Rodrigues, L., J. Ramos, I. Couto, L. Amaral, and M. Viveiros. (2011). Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol 11: 35.

Rodriguez-Contreras, D., H. Aslan, X. Feng, K. Tran, P.A. Yates, S. Kamhawi, and S.M. Landfear. (2015). Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor. FASEB J. 29: 11-24.

Roohparvar, R., M.A. De Waard, G.H. Kema, and L.H. Zwiers. (2007). MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genet Biol 44: 378-388.

Roshanbin, S., F.A. Lindberg, E. Lekholm, M.M. Eriksson, E. Perland, J. Åhlund, A. Raine, and R. Fredriksson. (2016). Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. BMC Neurosci 17: 43.

Rottmann, T., W. Zierer, C. Subert, N. Sauer, and R. Stadler. (2016). STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. J Exp Bot. [Epub: Ahead of Print]

Ruiz-Pavón, L., P.M. Karlsson, J. Carlsson, D. Samyn, B. Persson, B.L. Persson, and C. Spetea. (2010). Functionally important amino acids in the Arabidopsis thylakoid phosphate transporter: homology modeling and site-directed mutagenesis. Biochemistry 49: 6430-6439.

Ryu, N., B. Sagong, H.J. Park, M.A. Kim, K.Y. Lee, J.Y. Choi, and U.K. Kim. (2016). Screening of the SLC17A8 gene as a causative factor for autosomal dominant non-syndromic hearing loss in Koreans. BMC Med Genet 17: 6.

Sa-Nogueira I. and Ramos S.S. (1997). Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. J. of Bacteriol. 179:7705-7711.

Said, H.M., K. Van Voorhis, F.K. Ghishan, N. Abumurad, W. Nylander, and R. Redha. (1989). Transport characteristics of glutamine in human intestinal brush-border membrane vesicles. Am. J. Physiol. 256: G240-245.

Saier, M.H., Jr, D.L. Wentzel, B.U. Feucht, and J.J. Judice. (1975). A transport system for phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate in Salmonella typhimurium. J. Biol. Chem. 250: 5089-5096.

Saitoh H., Hirabuchi A., Fujisawa S., Mitsuoka C., Terauchi R. and Takano Y. (2014). MoST1 encoding a hexose transporter-like protein is involved in both conidiation and mycelial melanization of Magnaporthe oryzae. FEMS Microbiol Lett. 352(1):104-13.

Sakamoto, T., K. Inoue-Sakamoto, and D.A. Bryant. (1999). A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 181: 7363-7372.

Santiviago, C.A., J.A. Fuentes, S.M. Bueno, A.N. Trombert, A.A. Hildago, L.T. Socias, P. Youderian, and G.C. Mora. (2002). The Salmonella entrica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol. Microbiol. 46: 687-698.

Sanyal, S. and M. Ramaswami. (2002). Spinsters, synaptic defects, and amaurotic idiocy. Neuron 36: 335-338.

Sargiacomo, M., M. Valtieri, M. Gabbianelli, E. Pelosi, U. Testa, A. Camagna, and C. Peschle. (1991). Pure human hematopoietic progenitors: direct inhibitory effect of transforming growth factors-beta 1 and -beta 2. Ann. N.Y. Acad. Sci. 628: 84-91.

Sasaki, M. and Y. Kurusu. (2004). Analysis of spontaneous base substitutions generated in mutator strains of Bacillus subtilis. FEMS Microbiol. Lett. 234: 37-42.

Sato, M. and M. Mueckler. (1999). A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J. Biol. Chem. 274: 24721-24725.

Sauer, J.-D., Bachman, M.A., and Swanson, M.S. (2005). The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc. Natl. Acad. Sci. USA 102: 9924-9929.

Savalas, L.R., B. Gasnier, M. Damme, T. Lübke, C. Wrocklage, C. Debacker, A. Jézégou, T. Reinheckel, A. Hasilik, P. Saftig, and B. Schröder. (2011). Disrupted in renal carcinoma 2 (DIRC2), a novel transporter of the lysosomal membrane, is proteolytically processed by cathepsin L. Biochem. J. 439: 113-128.

Sawada, K., N. Echigo, N. Juge, T. Miyaji, M. Otsuka, H. Omote, A. Yamamoto, and Y. Moriyama. (2008). Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. USA. 105: 5683-5686.

Schaedler TA. and van Veen HW. (2010). A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J. 24(10):3653-61.

Scheepers, A., S. Schmidt, A. Manolescu, C.I. Cheeseman, A. Bell, C. Zahn, H.G. Joost, and A. Schürmann. (2005). Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol. Membr. Biol. 22: 339-351.

Schilling, S. and C. Oesterhelt. (2007). Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga. Biochem. J. 406: 325-331.

Schmitt, B.M. and H. Koepsell. (2005). Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J. Biol. Chem. 280: 24481-24490.

Schneider, S., A. Schneidereit, K.R. Konrad, M.R. Hajirezaei, M. Gramann, R. Hedrich, and N. Sauer. (2006). Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane. Plant Physiol. 141:565-577.

Schneider, S., A. Schneidereit, P. Udvardi, U. Hammes, M. Gramann, P. Dietrich, and N. Sauer. (2007). Arabidopsis INOSITOL TRANSPORTER2 Mediates H+-Symport of Different Inositol Epimers and Derivatives across the Plasma Membrane. Plant Physiol. 145: 1395-1407.

Schneider, S., D. Beyhl, R. Hedrich, and N. Sauer. (2008). Functional and Physiological Characterization of Arabidopsis INOSITOL TRANSPORTER1, a Novel Tonoplast-Localized Transporter for myo-Inositol. Plant Cell 20: 1073-1087.

Schneidereit, A., J. Scholz-Starke, N. Sauer, and M. Büttner. (2005). AtSTP11, a pollen tube-specific monosaccharide transporter in Arabidopsis. Planta.221: 48-55.

Scholz-Starke J., M. Büttner, and N. Sauer. (2003). AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol. 131:70-77.

Schubbe, S., M. Kube, A. Scheffel, C. Wawer, U. Heyen, A. Meyerdierks, M.H. Madkour, F. Mayer, R. Reinhardt, and D. Schüler. (2003). Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185: 5779–5790.

Schuldiner, S., A. Shirvan, and M. Linial. (1995). Vesicular neurotransmitter transporters: from bacteria to humans. Physiol. Rev. 75: 369-392.

Schulz, A., D. Beyhl, I. Marten, A. Wormit, E. Neuhaus, G. Poschet, M. Büttner, S. Schneider, N. Sauer, and R. Hedrich. (2011). Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 68: 129-136.

Schussler, A., H. Martin, D. Cohen, M. Fitz, and D. Wipf. (2006). Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444: 933-936.

Schweizer U. and Kohrle J. (2013). Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta. 1830(7):3965-73.

Schwöppe, C., H.H. Winkler, and H.E. Neuhaus. (2002). Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184: 2108-2115.

Seeger, C., C. Poulsen, and G. Dandanell. (1995). Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J. Bacteriol. 177: 5506-5516.

Sekine, T., S.H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou. (1998). Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429: 179-182.

Seol, W. and A.J. Shatkin. (1992). Escherichia coli α-ketoglutarate permease is a constitutively expressed proton symporter. J. Biol. Chem. 267: 6409-6413.

Seol, W. and A.J. Shatkin. (1992). Site-directed mutants of Escherichia coli α-ketoglutarate permease (KgtP). Biochemistry 31: 3550-3554.

Serrano-Saiz, E., R.J. Poole, T. Felton, F. Zhang, E.D. De La Cruz, and O. Hobert. (2013). Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155: 659-673.

Sharifi, A., M. Kousi, C. Sagné, G.C. Bellenchi, L. Morel, M. Darmon, H. Hulková, R. Ruivo, C. Debacker, S. El Mestikawy, M. Elleder, A.E. Lehesjoki, A. Jalanko, B. Gasnier, and A. Kyttälä. (2010). Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet 19: 4497-4514.

Shayeghi, M., G.O. Latunde-Dada, J.S. Oakhill, A.H. Laftah, K. Takeuchi, N. Halliday, Y. Khan, A. Warley, F.E. McCann, R.C. Hider, D.M. Frazer, G.J. Anderson, C.D. Vulpe, R.J. Simpson, and A.T. McKie. (2005). Identification of an intestinal heme transporter. Cell 122: 789-801.

Sheremet, A.S., S.V. Gronskiy, R.A. Akhmadyshin, A.E. Novikova, V.A. Livshits, R.S. Shakulov, and N.P. Zakataeva. (2011). Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. J Ind Microbiol Biotechnol 38: 65-70.

Shim, M.S., J.Y. Kim, K.H. Lee, H.K. Jung, B.A. Carlson, X.M. Xu, D.L. Hatfield, and B.J. Lee. (2011). l(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation. Biochem. J. 439: 277-286.

Shimazu, M., T. Sekito, K. Akiyama, Y. Ohsumi, and Y. Kakinuma. (2005). A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae. J. Biol. Chem. 280: 4851-4857.

Shin DS., Zhao R., Fiser A. and Goldman DI. (2012). Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption. Am J Physiol Cell Physiol. 303(8):C834-42.

Shin, D.S., R. Zhao, E.H. Yap, A. Fiser, and I.D. Goldman. (2012). A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding. Am. J. Physiol. Cell Physiol. 302: C1405-1412.

Shin, D.S., S.H. Min, L. Russell, R. Zhao, A. Fiser, and I.D. Goldman. (2010). Functional roles of aspartate residues of the proton-coupled folate transporter (PCFT-SLC46A1); a D156Y mutation causing hereditary folate malabsorption. Blood 116: 5162-5169.

Shin, H.J., N. Anzai, A. Enomoto, X. He, do K. Kim, H. Endou, and Y. Kanai. (2007). Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology. 45: 1046-1055.

Shinnick, S.G., S.A. Perez, and M.F. Varela. (2003). Altered substrate selection of the melibiose transporter (MelY) of Enterobacter cloacae involving point mutations in Leu-88, Leu-91, and Ala-182 that confer enhanced maltose transport. J. Bacteriol. 185: 3672-3677.

Shiraya, K., T. Hirata, R. Hatano, S. Nagamori, P. Wiriyasermkul, P. Jutabha, M. Matsubara, S. Muto, H. Tanaka, S. Asano, N. Anzai, H. Endou, A. Yamada, H. Sakurai, and Y. Kanai. (2010). A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules. J. Biol. Chem. 285: 22141-22151.

Sim, S.Y., E.J. Hong, Y. Kim, and H.S. Lee. (2014). Analysis of cepA encoding an efflux pump-like protein in Corynebacterium glutamicum. J Microbiol 52: 278-283.

Siskind, L.J., L. Feinstein, T. Yu, J.S. Davis, D. Jones, J. Choi, J.E. Zuckerman, W. Tan, R.B. Hill, J.M. Hardwick, and M. Colombini. (2008). Anti-apoptotic Bcl-2 Family proteins disassemble ceramide channels. J. Biol. Chem. 283: 6622-6630.

Skelly, P.J., J.W. Kim, J. Cunningham, and C.B. Shoemaker. (1994). Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J. Biol. Chem. 269: 4247-4253.

Slavetinsky, C.J., A. Peschel, and C.M. Ernst. (2012). Alanyl-phosphatidylglycerol and lysyl-phosphatidylglycerol are translocated by the same MprF flippases and have similar capacities to protect against the antibiotic daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 56: 3492-3497.

Sloothaak, J., M. Schilders, P.J. Schaap, and L.H. de Graaff. (2014). Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express 4: 66.

Smirnova, I., V. Kasho, and H.R. Kaback. (2011). Lactose permease and the alternating access mechanism. Biochemistry 50: 9684-9693.

Smirnova, I., V. Kasho, J. Sugihara, and H.R. Kaback. (2011). Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding. Proc. Natl. Acad. Sci. USA 108: 15147-15151.

Smit, A., S.G. Moses, I.S. Pretorius, and R.R. Cordero Otero. (2008). The Thr505 and Ser557 residues of the AGT1-encoded α- glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae. J. Appl. Microbiol. 104: 1103-1111.

Smith, D.J., J. Park, J.M. Tiedje, and W.W. Mohn. (2007). A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J. Bacteriol. 189: 6195-6204.

Smith, K.P., S. Kumar, and M.F. Varela. (2009). Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch. Microbiol. 191: 903-911.

Soares-Silva, I., J. Sá-Pessoa, V. Myrianthopoulos, E. Mikros, M. Casal, and G. Diallinas. (2011). A substrate translocation trajectory in a cytoplasm-facing topological model of the monocarboxylate/H⁺ symporter Jen1p. Mol. Microbiol. 81: 805-817.

Soo, V.W., P. Hanson-Manful, and W.M. Patrick. (2011). Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 108: 1484-1489.

Srinivas, S.R., P.D. Prasad, N.S. Umapathy, V. Ganapathy, and P.S. Shekhawat. (2007). Transport of butyryl-L-carnitine, a potential prodrug, via the carnitine transporter OCTN2 and the amino acid transporter ATB0,+. Am. J. Physiol. Gastrointest Liver Physiol 293: G1046-1053.

Stadler, R., M. Büttner, P. Ache, R. Hedrich, N. Ivashikina, M. Melzer, S.M. Shearson, S.M. Smith, and N. Sauer. (2003). Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol. 133: 528-537.

Stasyk, O.G., M.M. Maidan, O.V. Stasyk, P. Van Dijck, J.M. Thevelein, and A.A. Sibirny. (2008). Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot. Cell. 7(4): 735-746.

Staub, J.M., L. Brand, M. Tran, Y. Kong, and S.G. Rogers. (2012). Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter. J Ind Microbiol Biotechnol 39: 641-647.

Staubitz, P., H. Neumann, T. Schneider, I. Wiedemann, and A. Peschel. (2004). MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 231: 67-71.

Stolz, J. (2003). Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe. Yeast. 20: 221-231.

Stolz, J., H.J. Wöhrmann, and C. Vogl. (2005). Amiloride uptake and toxicity in fission yeast are caused by the pyridoxine transporter encoded by bsu1+ (car1+). Eukaryot. Cell. 4: 319-326.

Stolz, J., T. Caspari, A.M. Carr, N. Sauer. (2004). Cell division defects of Schizosaccharomyces pombe liz1- mutants are caused by defects in pantothenate uptake. Euk. Cell 3: 406-412.

Stolz, J., U. Hoja, S, Meier, N. Sauer, and E. Schweizer. (2000). Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. J. Biol. Chem. 274: 18741-18746.

Sturm, A., V. Gorboulev, D. Gorbunov, T. Keller, C. Volk, B.M. Schmitt, P. Schlachtbauer, G. Ciarimboli, and H. Koepsell. (2007). Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. Am. J. Physiol. Renal Physiol 293: F767-779.

Su X. and Tsang JS. (2013). Existence of a robust haloacid transport system in a Burkholderia species bacterium. Biochim Biophys Acta. 1828(2):187-92.

Su, X., R. Li, K.F. Kong, and J.S. Tsang. (2016). Transport of haloacids across biological membranes. Biochim. Biophys. Acta. 1858: 3061-3070.

Subramanian, V.S., J.S. Marchant, and H.M. Said. (2008). Apical membrane targeting and trafficking of the human proton-coupled transporter in polarized epithelia. Am. J. Physiol. Cell Physiol. 294: C233-240.

Sugimoto, N., T. Iwaki, S. Chardwiriyapreecha, M. Shimazu, M. Kawano, T. Sekito, K. Takegawa, and Y. Kakinuma. (2011). Atg22p, a vacuolar membrane protein involved in the amino acid compartmentalization of Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 75: 385-387.

Sun, L., X. Zeng, C. Yan, X. Sun, X. Gong, Y. Rao, and N. Yan. (2012). Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490: 361-366.

Sun, Y. and C.K. Vanderpool. (2011). Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J. Bacteriol. 193: 143-153.

Suzawa, K., A. Yukita, T. Hayata, T. Goto, H. Danno, T. Michiue, K.W. Cho, and M. Asashima. (2007). Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis. Int J Dev Biol 51: 183-190.

Swain, K., I. Casabon, L.D. Eltis, and W.W. Mohn. (2012). Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J. Bacteriol. 194: 6720-6727.

Sweet, D.H. and J.B. Pritchard. (1999). rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. Am. J. Physiol. 277: F890-898.

Tahlan, K., S.K. Ahn, A. Sing, T.D. Bodnaruk, A.R. Willems, A.R. Davidson, and J.R. Nodwell. (2007). Initiation of actinorhodin export in Streptomyces coelicolor. Mol. Microbiol. 63: 937-940.

Tailor, C.S., B.J. Willett, and D. Kabat. (1999). A putatve cell surface receptor for anemia-inducing feline leukemia virus subgroup C is a member of a transporter superfamily. Virology 73: 6500-6505.

Takanaga H. and Frommer WB. (2010). Facilitative plasma membrane transporters function during ER transit. FASEB J. 24(8):2849-58.

Tamai, I., R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. (1998). Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273: 20378-20382.

Tan, P.K., T.M. Ostertag, and J.N. Miner. (2016). Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep 6: 34995.

Tanabe, T., H. Nakao, T. Kuroda, T. Tsuchiya, and S. Yamamoto. (2006). Involvement of the Vibrio parahaemolyticus pvsC gene in export of the siderophore vibrioferrin. Microbiol Immunol 50: 871-876.

Tanabe, T., T. Funahashi, H. Nakao, S.-I. Miyoshi, S. Shinoda, and S. Yamamoto. (2003). Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J. Bacteriol. 185: 6938-6949.

Tang, G., B. Jiang, Y. Huang, M. Fu, L. Wu, and R. Wang. (2011). Identification of a novel bacterial k(+) channel. J. Membr. Biol. 242: 153-164.

Tanner, W. (2000). The Chlorella hexose/H+-symporters. Int Rev Cytol 200: 101-141.

Tavoulari, S. and S. Frillingos. (2008). Substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae. J. Mol. Biol. 376: 681-693.

Teijeira, F., R.V. Ullán, S.M. Guerra, C. García-Estrada, I. Vaca, and J.F. Martín. (2009). The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem. J. 418: 113-124.

Tenreiro, S., P.A. Nunes, C.A. Viegas, M.S. Neves, M.C. Teixeira, M.G. Cabral, and I. Sá-Correia. (2002). AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 292: 741-748.

Teranishi, Y., M. Inoue, N.G. Yamamoto, T. Kihara, B. Wiehager, T. Ishikawa, B. Winblad, S. Schedin-Weiss, S. Frykman, and L.O. Tjernberg. (2015). Proton myo-inositol cotransporter is a novel γ-secretase associated protein that regulates Aβ production without affecting Notch cleavage. FEBS J. 282: 3438-3451.

Thompson, S.A., E.V. Maani, A.H. Lindell, C.J. King, and J.V. McArthur. (2007). Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl. Environ. Microbiol. 73: 2199-2206.

Tirosh, O., N. Sigal, A. Gelman, N. Sahar, N. Fluman, S. Siemion, and E. Bibi. (2012). Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc. Natl. Acad. Sci. USA 109: 12473-12478.

Tomitori, H., K. Kashiwagi, K. Sakata, Y. Kakinuma, and K. Igarashi. (1999). Identification of a gene for a polyamine transport protein in yeast. J. Biol. Chem. 274: 3265-3267.

Truernit, E., J. Schmid, P. Epple, J. Illig, and N. Sauer. (1996). The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8: 2169-2182.

Truernit, E., R. Stadler, K. Baier, and N. Sauer. (1999). A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J. 17: 191-201.

Truong, D.M., G. Kaler, A. Khandelwal, P.W. Swaan, and S.K. Nigam. (2008). Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283(13): 8654-8663.

Truong-Bolduc, Q.C., J. Strahilevitz, and D.C. Hooper. (2006). NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 1104-1107.

Truong-Bolduc, Q.C., P.M. Dunman, J. Strahilevitz, S.J. Projan, and D.C. Hooper. (2005). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J. Bacteriol. 187: 2395-2405.

Tse, Y.M., M. Yu, and J.S. Tsang. (2009). Topological analysis of a haloacid permease of a Burkholderia sp. bacterium with a PhoA-LacZ reporter. BMC Microbiol 9: 233.

Tsuchida, H., N. Anzai, H.J. Shin, M.F. Wempe, P. Jutabha, A. Enomoto, S.H. Cha, T. Satoh, M. Ishida, H. Sakurai, and H. Endou. (2010). Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem 25: 511-522.

Turner, M.S. and J.D. Helmann. (2000). Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the σX and σW factors in Bacillus subtilis. J. Bacteriol. 182: 5202-5210.

Uemura, T., K. Tachihara, H. Tomitori, K. Kashiwagi, K. Igarashi. (2005). Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J. Biol. Chem. 280: 9646-9652.

Uldry, M., M. Ibberson, J.D. Horisberger, J.Y. Chatton, B.M. Riederer, and B. Thorens. (2001). Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J. 20: 4467-4477.

Uldry, M., M. Ibberson, M. Hosokawa, and B. Thorens. (2002). GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 524: 199-203.

Ullán, R.V., G. Liu, J. Casqueiro, S. Gutiérrez, O. Bañuelos, and J.F. Martín. (2002). The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol. Genet. Genomics 267: 673-683.

Unkles SE., Karabika E., Symington VF., Cecile JL., Rouch DA., Akhtar N., Cromer BA. and Kinghorn JR. (2012). Alanine scanning mutagenesis of a high-affinity nitrate transporter highlights the requirement for glycine and asparagine residues in the two nitrate signature motifs. Biochem J. 447(1):35-42.

Unkles, S.E., K.L. Hawker, C. Grieve, E.I. Campbell, P. Montague, and J.R. Kinghorn. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88: 204-208.

Unkles, S.E., V.F. Symington, Z. Kotur, Y. Wang, M.Y. Siddiqi, J.R. Kinghorn, and A.D. Glass. (2011). Physiological and biochemical characterization of AnNitA, the Aspergillus nidulans high-affinity nitrite transporter. Eukaryot. Cell. 10: 1724-1732.

Uwai, Y., Y. Ozeki, T. Isaka, H. Honjo, and K. Iwamoto. (2011). Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food-drug interaction. Drug Metab Pharmacokinet 26: 486-493.

Valmeekam, V., Y.L. Loh, and M.J. San Francisco. (2001). Control of exuT activity for galacturonate transport by the negative regulator ExuR in Erwinia chrysanthemi EC16. Mol. Plant Microbe Interact. 14: 816-820.

Van Camp, B.M., R.R. Crow, Y. Peng, and M.F. Varela. (2007). Amino acids that confer transport of raffinose and maltose sugars in the raffinose permease (RafB) of Escherichia coli as implicated by spontaneous mutations at Val-35, Ser-138, Ser-139, Gly-389 and Ile-391. J. Membr. Biol. 220: 87-95.

van Wezel, G.P., K. Mahr, M. König, B.A. Traag, E.F. Pimentel-Schmitt, A. Willimek, and F. Titgemeyer. (2005). GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol. Microbiol. 55: 624-636.

Vardy, E., S. Steiner-Mordoch, and S. Schuldiner. (2005). Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters. J. Bacteriol. 187: 7518-7525.

Västermark, A. and M.H. Saier. (2014). Major Facilitator Superfamily (MFS) evolved without 3-transmembrane segment unit rearrangements. Proc. Natl. Acad. Sci. USA 111: E1162-1163.

Västermark, A., B. Lunt, and M. Saier. (2014). Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units. J. Mol. Microbiol. Biotechnol. 24: 82-90.

Verheijen, F.W., E. Verbeek, N. Aula, C.E. Beerens, A.C. Havelaar, M. Joosse, L. Peltonen, R. Aula, H. Galjaard, P.J. van der Spek, and G.M. Mancini. (1999). A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Genet. 23: 462-465.

Visser, W.E., N.J. Philp, T.B. van Dijk, W. Klootwijk, E.C. Friesema, J. Jansen, P.W. Beesley, A.G. Ianculescu, and T.J. Visser. (2009). Evidence for a homodimeric structure of human monocarboxylate transporter 8. Endocrinology 150: 5163-5170.

Visser, W.F., C.W. van Roermund, L. Ijlst, H.R. Waterham, and R.J. Wanders. (2007). Metabolite transport across the peroxisomal membrane. Biochem. J. 401: 365-375.

Vitreschak, A.G., D.A. Rodionov, A.A. Mironov, and M.S. Gelfand. (2002). Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30: 3141-3151.

Vogl, C., C.M. Klein, A.F. Batke, M.E. Schweingruber, and J. Stolz. (2008). Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe. J. Biol. Chem. 283: 7379-7389.

Volkova M., Mandikova J., Barta P., Navratilova L., Laznickova A. and Trejtnar F. (2015). The in vivo disposition and in vitro transmembrane transport of two model radiometabolites of DOTA-conjugated receptor-specific peptides labelled with (177) Lu. J Labelled Comp Radiopharm. 58(13-14):483-9.

von Rozycki, T., M.R. Yen, E.E. Lende, and M.H. Saier, Jr. (2004). The YedZ family: possible heme binding proteins that can be fused to transporters and electron carriers. J. Mol. Microbiol. Biotechnol. 8: 129-140.

Walters, D.K., B.K. Arendt, and D.F. Jelinek. (2013). CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12: 3175-3183.

Wang C., Shen Y., Hou J., Suo F. and Bao X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Anal Biochem. 442(2):241-8.

Wang M., Qi H., Li J., Xu Y. and Zhang H. (2015). Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem Toxicol. 86:217-24.

Wang, C., L. Yang, A.A. Shah, E.S. Choi, and S.W. Kim. (2015). Dynamic interplay of multidrug transporters with TolC for isoprenol tolerance in Escherichia coli. Sci Rep 5: 16505.

Wang, C., X. Bao, Y. Li, C. Jiao, J. Hou, Q. Zhang, W. Zhang, W. Liu, and Y. Shen. (2015). Data set for cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Data Brief 4: 119-126.

Wang, J., T. Li, X. Wu, and Z. Zhao. (2014). Molecular cloning and functional analysis of a H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol 118: 453-461.

Wang, Q. and M.E. Morris. (2007). The role of monocarboxylate transporter 2 and 4 in the transport of γ-hydroxybutyric acid in mammalian cells. Drug Metab Dispos 35: 1393-1399.

Wang, Q., H. Li, and A.F. Post. (2000). Nitrate assimilation genes of the marine diazotrophic, filamentous cyanobacterium Trichodesmium sp. strain WH9601. J. Bacteriol. 182: 1764-1767.

Wang, W. and H.W. van Veen. (2012). Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. PLoS One 7: e38715.

Wang, W., A.A. Guffanti, Y. Wei, M. Ito, and T.A. Krulwich. (2000). Two types of Bacillus subtilis tetA(L) deletion strains reveal the physiological importance of TetA(L) in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J. Bacteriol. 182: 2088-2095.

Wang, X., R.I. Sarker, and P.C. Maloney. (2006). Analysis of substrate-binding elements in OxlT, the oxalate:formate antiporter of Oxalobacter formigenes. Biochemistry 45: 10344-10350.

Wang, Y., W. Li, Y. Siddiqi, V.F. Symington, J.R. Kinghorn, S.E. Unkles, and A.D. Glass. (2008). Nitrite transport is mediated by the nitrite-specific high-affinity NitA transporter and by nitrate transporters NrtA, NrtB in Aspergillus nidulans. Fungal Genet Biol 45: 94-102.

Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C.P. Hollenberg, and E. Boles. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464: 123-128.

Williams, P.A. and L.E. Shaw. (1997). mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. J. Bacteriol. 179: 5935-5942.

Wilson MR., Kugel S., Huang J., Wilson LJ., Wloszczynski PA., Ye J., Matherly LH. and Hou Z. (2015). Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem J. 469(1):33-44.

Wilson, M.C., D. Meredith, J.E. Fox, C. Manoharan, A.J. Davies, and A.P. Halestrap. (2005). Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J. Biol. Chem. 280: 27213-27221.

Wilson, M.C., V.N. Jackson, C. Heddle, N.T. Price, H. Pilegaard, C. Juel, A. Bonen, I. Montgomery, O.F. Hutter, and A.P. Halestrap. (1998). Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J. Biol. Chem. 273: 15920-15926.

Wilson, M.R., Z. Hou, and L.H. Matherly. (2014). Substituted Cysteine Accessibility Reveals a Novel Transmembrane 2-3 Reentrant Loop and Functional Role for Transmembrane Domain 2 in the Human Proton-coupled Folate Transporter. J. Biol. Chem. 289: 25287-25295.

Wirth, E.K., S.Y. Sheu, J. Chiu-Ugalde, R. Sapin, M.O. Klein, I. Mossbrugger, L. Quintanilla-Martinez, M.H. de Angelis, H. Krude, T. Riebel, K. Rothe, J. Köhrle, K.W. Schmid, U. Schweizer, and A. Grüters. (2011). Monocarboxylate transporter 8 deficiency: altered thyroid morphology and persistent high triiodothyronine/thyroxine ratio after thyroidectomy. Eur J Endocrinol 165: 555-561.

Wirth, E.K., U. Schweizer, and J. Köhrle. (2014). Transport of thyroid hormone in brain. Front Endocrinol (Lausanne) 5: 98.

Wirth, J., F. Chopin, V. Santoni, G. Viennois, P. Tillard, A. Krapp, L. Lejay, F. Daniel-Vedele, and A. Gojon. (2007). Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J. Biol. Chem. 282: 23541-23552.

Witkowska K., Smith KM., Yao SY., Ng AM., O'Neill D., Karpinski E., Young JD. and Cheeseman CI. (2012). Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol. 303(4):F527-39.

Wollack, J.B., B. Makori, S. Ahlawat, R. Koneru, S.C. Picinich, A. Smith, I.D. Goldman, A. Qiu, P.D. Cole, J. Glod, and B. Kamen. (2008). Characterization of folate uptake by choroid plexus epithelial cells in a rat primary culture model. J Neurochem 104(6): 1494-1503.

Wood, N.J., T. Alizadeh, D.J. Richardson, S.J. Ferguson, and J.W.B. Moir. (2002). Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol. Microbiol. 44: 157-170.

Woolley, R.C., G. Vediyappan, M. Anderson, M. Lackey, B. Ramasubramanian, B. Jiangping, T. Borisova, J.A. Colmer, A.N. Hamood, C.S. McVay, and J.A. Fralick. (2005). Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli. J. Bacteriol. 187: 5500-5503.

Wright DJ. and Tate CG. (2015). Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B). Biochim Biophys Acta. 1848(10 Pt A):2261-2270.

Wright, D.C. (2007). Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis. Appl Physiol Nutr Metab 32: 840-845.

Wright, M.B., E.A. Howell, and R.F. Gaber. (1996). Amino acid substitutions in membrane-spanning domains of Hol1, a member of the major facilitator superfamily of transporters, confer nonselective cation uptake in Saccharomyces cerevisiae. J. Bacteriol. 178: 7197-7205.

Wu, W., N. Jamshidi, S.A. Eraly, H.C. Liu, K.T. Bush, B.O. Palsson, and S.K. Nigam. (2013). Multispecific drug transporter slc22a8 (oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos 41: 1825-1834.

Wu, X., R. Kekuda, W. Huang, Y.J. Fei, F.H. Leibach, J. Chen, S.J. Conway, and V. Ganapathy. (1998). Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem. 273: 32776-32786.

Wuchiyama, J., M. Kimura, and I. Yamaguchi. (2000). A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster of Fusarium graminearum. J Antibiot (Tokyo) 53: 196-200.

Xie, X., H. Lin, X. Peng, C. Xu, Z. Sun, K. Jiang, A. Huang, X. Wu, N. Tang, A. Salvioli, P. Bonfante, and B. Zhao. (2016). Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. Mol Plant 9: 1583-1608.

Xu Y., Chen B., Chao H. and Zhou NY. (2013). mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol. 79(20):6362-8.

Xu, X., J. Chen, H. Xu, and D. Li. (2014). Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genet Biol 69: 75-83.

Yadav, V., M. Kumar, D.K. Deep, H. Kumar, R. Sharma, T. Tripathi, N. Tuteja, A.K. Saxena, and A.K. Johri. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J. Biol. Chem. 285: 26532-26544.

Yaffe, D., S. Radestock, Y. Shuster, L.R. Forrest, and S. Schuldiner. (2013). Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2. Proc. Natl. Acad. Sci. USA 110: E1332-1341.

Yamada, K., Y. Saijo, H. Nakagami, and Y. Takano. (2016). Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354: 1427-1430.

Yamada, S., N. Awano, K. Inubushi, E. Maeda, S. Nakamori, K. Nishino, A. Yamaguchi, and H. Takagi. (2006). Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl. Environ. Microbiol. 72: 4735-4742.

Yamada, Y., K. Hideka, S. Shiota, T. Kuroda, and T. Tsuchiya. (2006). Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. Biol Pharm Bull 29: 554-556.

Yamada, Y., S. Shiota, T. Mizushima, T. Kuroda, and T. Tsuchiya. (2006). Functional gene cloning and characterization of MdeA, a multidrug efflux pump from Staphylococcus aureus. Biol Pharm Bull 29: 801-804.

Yanagisawa, H., T. Miyashita, Y. Nakano, and D. Yamamoto. (2003). HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ. 10: 798-807.

Yanatori, I., Y. Yasui, K. Miura, and F. Kishi. (2012). Mutations of FLVCR1 in posterior column ataxia and retinitis pigmentosa result in the loss of heme export activity. Blood Cells Mol Dis 49: 60-66.

Yang, C., D.A. Rodionov, X. Li, O.N. Laikova, M.S. Gelfand, O.P. Zagnitko, M.F. Romine, A.Y. Obraztsova, K.H. Nealson, and A.L. Osterman. (2006). Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J. Biol. Chem. 281: 29872-29885.

Yang, J., X. Xu, and G. Liu. (2012). Amplification of an MFS Transporter Encoding Gene penT Significantly Stimulates Penicillin Production and Enhances the Sensitivity of Penicillium chrysogenum to Phenylacetic Acid. J Genet Genomics 39: 593-602.

Yao, J. and S.M. Bajjalieh. (2009). SVOP is a nucleotide binding protein. PLoS One 4: e5315.

Yasuda, S., S. Hasui, M. Kobayashi, S. Itagaki, T. Hirano, and K. Iseki. (2008). The mechanism of carrier-mediated transport of folates in BeWo cells: the involvement of heme carrier protein 1 in placental folate transport. Biosci. Biotechnol. Biochem. 72: 329-334.

Ye, L. and P.C. Maloney. (2002). Structure/function relationships in OxlT, the oxalate/formate antiporter of Oxalobacter formigenes: assignment of transmembrane helix 2 to the translocation pathway. J. Biol. Chem. 277: 20372-20378.

Ye, L., Z. Jia, T. Jung, and P.C. Maloney. (2001). Toplogy of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. J. Bacteriol. 183: 2490-2496.

Yin, Y., X. He, P. Szewczyk, T. Nguyen, and G. Chang. (2006). Structure of the multidrug transporter EmrD from Escherichia coli. Science 312: 741-744.

Yonezawa, A., S. Masuda, S. Yokoo, T. Katsura, and K. Inui. (2006). Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319: 879-886.

Yong, Z., Z. Kotur, and A.D. Glass. (2010). Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J. 63: 739-748.

Yoshida, K.-I., Y. Yamamoto, K. Omae, M. Yamamoto, and Y. Fujita. (2002). Identification of two myo-inositol transporter genes of Bacillus subtilis. J. Bacteriol. 184: 983-991.

Young, C.S. and J.T. Beatty. (1998). A topological model of the Rhodobacter capsulatus light-harvesting I complex assembly protein LlaA (previously known as ORF1696). J. Bacteriol. 180: 4742-4745.

Yu, M., Y.W. Faan, W.Y. Chung, and J.S. Tsang. (2007). Isolation and characterization of a novel haloacid permease from Burkholderia cepacia MBA4. Appl. Environ. Microbiol. 73: 4874-4880.

Yu, S., A. Vit, S. Devenish, H.K. Mahanty, A. Itzen, R.S. Goody, and W. Blankenfeldt. (2011). Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin C resistance in other bacteria. BMC Struct Biol 11: 33.

Zada, D., E. Blitz, and L. Appelbaum. (2017). Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol. Cell Endocrinol. [Epub: Ahead of Print]

Zähner, D., X. Zhou, S.T. Chancey, J. Pohl, W.M. Shafer, and D.S. Stephens. (2010). Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 54: 3516-3519.

Zakataeva, N.P., E.A. Kutukova, S.V. Gronskiĭ, P.V. Troshin, V.A. Livshits, and V.V. Aleshin. (2006). [Export of metabolites by the proteins of the DMT and RhtB families and its possible role in intercellular communication]. Mikrobiologiia 75: 509-520.

Zakataeva, N.P., S.V. Gronskiy, A.S. Sheremet, E.A. Kutukova, A.E. Novikova, and V.A. Livshits. A new function for the Bacillus PbuE purine base efflux pump: efflux of purine nucleosides. Res. Microbiol. 158(8-9): 659-665.

Zhan, C., S. Wang, Y. Sun, X. Dai, X. Liu, L. Harvey, B. McNeil, Y. Yang, and Z. Bai. (2016). The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Res 16:.

Zhang Z., Wang R. and Xie J. (2015). Mycobacterium smegmatis MSMEG_3705 encodes a selective major facilitator superfamily efflux pump with multiple roles. Curr Microbiol. 70(6):801-9.

Zhang, C.C., M.C. Durand, R. Jeanjean, and F. Joset. (1989). Molecular and genetical analysis of the fructose-glucose transport system in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 3: 1221-1229.

Zhang, X., K. Garbett, K. Veeraraghavalu, B. Wilburn, R. Gilmore, K. Mirnics, and S.S. Sisodia. (2012). A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32: 8633-8648.

Zhang, X.C., Y. Zhao, J. Heng, and D. Jiang. (2015). Energy coupling mechanisms of MFS transporters. Protein. Sci. 24: 1560-1579.

Zhang, Y., Q. Bao, L.A. Gagnon, A. Huletsky, A. Oliver, S. Jin, and T. Langaee. (2010). ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression. Antimicrob. Agents Chemother. 54: 4772-4779.

Zhao R., Shin DS., Fiser A. and Goldman ID. (2012). Identification of a functionally critical GXXG motif and its relationship to the folate binding site of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol. 303(6):C673-81.

Zhao R., Visentin M., Suadicani SO. and Goldman ID. (2013). Inhibition of the proton-coupled folate transporter (PCFT-SLC46A1) by bicarbonate and other anions. Mol Pharmacol. 84(1):95-103.

Zhao, R. and I.D. Goldman. (2007). The molecular identity and characterization of a proton-coupled folate transporter--PCFT; biological ramifications and impact on the activity of pemetrexed. Cancer Metastasis. Rev. 26: 129-139.

Zhao, R., E.S. Unal, D.S. Shin, and I.D. Goldman. (2010). Membrane topological analysis of the proton-coupled folate transporter (PCFT-SLC46A1) by the substituted cysteine accessibility method. Biochemistry 49: 2925-2931.

Zhao, R., M. Najmi, A. Fiser, and I.D. Goldman. (2016). Identification of an Extracellular Gate for the Proton-Coupled Folate Transporter (SLC46A1) by Cysteine Cross-Linking. J. Biol. Chem. [Epub: Ahead of Print]

Zhao, R., N. Diop-Bove, M. Visentin, and I.D. Goldman. (2011). Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 31: 177-201.

Zheng, H., G. Wisedchaisri, and T. Gonen. (2013). Crystal structure of a nitrate/nitrite exchanger. Nature 497: 647-651.

Zhou, J., E. Fernández, A. Galván, and A.J. Miller. (2000). A high affinity nitrate/nitrite transport system from Chlamydomonas requires two gene products. FEBS Lett. 466: 225-227.

Zorzano, A., M. Palacín, and A. Gumà. (2005). Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 183: 43-58.



2.A.1.1 The Sugar Porter (SP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.1.1

Galactose:H+ symporter, GalP (also transports xylose) (Hernández-Montalvo et al., 2001). Relative substrate affinities of wild-type and mutant forms of the E. coli sugar transporter GalP have been determined by solid-state NMR (Patching et al., 2008).

Bacteria

GalP of E. coli (P0AEP1)

 
2.A.1.1.10

Maltotriose/maltose:H+ symporter, Mal6T or Mal61 (Dietvorst et al. 2005).  The orthologue (90% identical) in Saccharomyces pastorianus (Lager yeast) (Saccharomyces cerevisiae x Saccharomyces eubayanus), MTT1 or Mty1 of 615 aas, has higher affinity for maltotriose than maltose (Magalhães et al. 2016).

Yeast

MAL6 of Saccharomyces cerevisiae

 
2.A.1.1.100Probable metabolite transport protein YFL040WFungiYFL040W of Saccharomyces cerevisiae
 
2.A.1.1.101Probable metabolite transport protein YDR387CFungiYDR387C of Saccharomyces cerevisiae
 
2.A.1.1.102Plastidic glucose transporter 4 (AtpGlcT)PlantsAt5g16150 of Arabidopsis thaliana
 
2.A.1.1.103D-xylose-proton symporter-like 3, chloroplasticPlantsAt5g59250 of Arabidopsis thaliana
 
2.A.1.1.104Myo-inositol transporter 2FungiITR2 of Saccharomyces cerevisiae
 
2.A.1.1.105Hexose transporter HXT11 (Low-affinity glucose transporter LGT3)FungiHXT11 of Saccharomyces cerevisiae
 
2.A.1.1.106Probable metabolite transport protein CsbCBacilliCsbC of Bacillus subtilis
 
2.A.1.1.107Hexose transporter HXT15FungiHXT15 of Saccharomyces cerevisiae
 
2.A.1.1.108Low-affinity glucose transporter HXT1FungiHXT1 of Saccharomyces cerevisiae
 
2.A.1.1.109Hexose transporter HXT14FungiHXT14 of Saccharomyces cerevisiae
 
2.A.1.1.11

General α-glucoside:H+ symporter, Gtr3, Mal11,Mal1T, Mtp1 or Agt1 . (Substrates include trehalose, maltotriose, maltose, turanose, isomaltose, α-methyl-glucoside, maltotriose, palatinose, and melezitose) (Smit et al., 2008).  Maltotriose is transported with higher affinity than maltose (Magalhães et al. 2016).

Yeast

AGT1 of Saccharomyces cerevisiae

 
2.A.1.1.110Hexose transporter HXT13FungiHXT13 of Saccharomyces cerevisiae
 
2.A.1.1.111

High-affinity glucose transporter HXT2.  Asp340 and Asn331 in part determine the high glucose affinity (Kasahara et al. 2007; Kasahara and Kasahara 2010).

Fungi

HXT2 of Saccharomyces cerevisiae

 
2.A.1.1.112High-affinity glucose transporter Ght1 (Hexose transporter 1)YeastGht1 of Schizosaccharomyces pombe
 
2.A.1.1.113

Putative metabolite transport protein YyaJ

Bacilli

YyaJ of Bacillus subtilis

 
2.A.1.1.114

Putative metabolite transport protein YaaU

Bacteria

YaaU of Escherichia coli

 
2.A.1.1.115

Putative metabolite transport protein YdjK

Bacteria

YdjK of Escherichia coli

 
2.A.1.1.116

Arabinose/xylose transporter, AraE (Wang et al. 2013).

Actinobacteria

AraE of Coynebacterium glutamicum

 
2.A.1.1.117

Glucose transporter Rco-3 or MoST1. MoST1 plays a specific role in conidiation and mycelial melanization which is not shared by other hexose transporter family members in M. oryzae (Saitoh et al. 2013).

Fungi

MoST1 of Magnaporthe oryzae

 
2.A.1.1.118

MFS porter of 435 aas

Crenarchaea

MFS porter of Sulfolobus solfataricus

 
2.A.1.1.119

The galacturonic acid (galacturonate) uptake porter, GatA, of 518 aas and 12 TMSs (Sloothaak et al. 2014).

Fungi

GatA of Aspergillus niger

 
2.A.1.1.12

 

Glucose uniporter, Glut3 (also transports dehydro-ascorbate; Maulén et al., 2003). Down-regulated in the brains of Alzheimer's disease patients (Liu et al., 2008b).  The structure of the human orthologue with D-glucose bound was solved at 1.5 Å resolution in the outward occluded conformation (Deng et al. 2015).  Sugars are predominantly coordinated by polar residues in the C-terminal domain. The conformational transition from the outward-open to the outward-occluded states entails a prominent local rearrangement of the extracellular part of  TMS 7. Comparison of the outward-facing GLUT3 structures with inward-open GLUT1 provides insight into the alternating access cycle for GLUTs, whereby the C-terminal domain provides the primary substrate-binding site and the N-terminal domain undergoes rigid-body rotation with respect to the C-terminal domain (Deng et al. 2015).

Animals

Gtr3 (Glut3) of Rattus norvegicus (rat)

 
2.A.1.1.120

Major myo-inositol transporter, IolT1, of 456 aas (Kröger et al. 2010).

Proteobacteria

IolT1 of Samonella enterica

 
2.A.1.1.121

Minor myo-inositol transporter, IolT2, of 478 aas (Kröger et al. 2010).

Proteobacteria

IolT2 of Salmonella enterica

 
2.A.1.1.122

Sorbitol (glucitol):H+ co-transporter, SOT2 (Km for sorbitol of 0.81 mM) of 491 aas and 12 TMSs (Gao et al. 2003). SOT2 of Prunus cerasus is mainly expressed only early in fruit development and not in leaves (Gao et al. 2003).

Plants

SOT2 of Pyrus pyrifolia (Chinese pear) (Pyrus serotina)

 
2.A.1.1.123

Sorbitol (D-Glucitol):H+ co-transporter, SOT1 (Km for sorbitol of 0.64 mM) of 509 aas and 12 TMSs (Gao et al. 2003). SOT1 of P. cerasus is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves (Gao et al. 2003).

Plants

SOT1 of Prunus salicina

 
2.A.1.1.124

The sugar uptake porter of 514 aas and 12 TMSs, STP10.  Transports glucose, galactose and mannose, and is therefore a hexose transporter (Rottmann et al. 2016).

STP10 of Arabidopsis thaliana

 
2.A.1.1.125

Glycerol:H+ symporter of 530 aas and 12 TMSs, GT1.  It is essnetial for the glycerol repression of the alcohol oxidase 1 (AOX1 gene (Zhan et al. 2016).

GT1 of Komagataella pastoris (Yeast) (Pichia pastoris)

 
2.A.1.1.126

Myo inositol uptake porter of 574 aas and 12 TMSs, Fst1.  Also takes up the polyketide mycotoxin produced by Fusarium verticillioides during the colonization of maize kernels, Fumonisin B1 (FB1).  The activity was demonstrated with the orthologue in Weissella verticillioides (Niu et al. 2016). 

Fst1 of Weissella confusa

 
2.A.1.1.127

Hexose:proton symporter of 525 aas and 12 TMSs, Hxt5. Takes up D-glucose, D-fructose, D-xylose, D-mannose, D-galactose with decreasing affinity in this order (Rani et al. 2016).

Hxt5 of Piriformospora indica

 
2.A.1.1.128

Facilitative (Na+-independent) glucose-specific transporter (Km = 3 mM) of 486 aas and 12 TMSs, HT1; inhibited by cytochalasin B and localized to the midgut (Price et al. 2007).

HT1 of Nilaparvata lugens (Brown planthopper)

 
2.A.1.1.129

High-capacity facilitative transporter for trehalose, TRET1, required to induce anhydrobiosis. Anhydrobiotic larvae can survive almost complete dehydration. Does not transport maltose, sucrose or lactose. Transports trehalose synthesized in the fat body and incorporates trehalose into other tissues that require a carbon source, thereby regulating trehalose levels in the hemolymph (Kikawada et al. 2007; Kanamori et al. 2010).  70% identical to the Drosophila homologue, TC# 2.a.1.1.99.

TRET1 of Polypedilum vanderplanki (Sleeping chironomid)

 
2.A.1.1.13

Fructose uniporter, GLUT5.  The proteins from rat and cow have been crystalized and their structures have been determined in the open outward- and open inward-facing conformations, respectively. On the basis of comparisons of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, a single point mutation proved to be enough to switch the substrate-binding preference from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of E. coli XylE suggested that, in addition to a global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices, TM7 and TM10, underlie a 'gated-pore' transport mechanism (Nomura et al. 2015).  GLUT5 is preferentially used for fructose uptake under (near) anoxic glycolysis to avoid feedback inhibition of phosphofructokinase (Park et al. 2017).

Animals

SLC2A5 of Homo sapiens

 
2.A.1.1.130

Glucose transporter 1, GLUT1 or Slc2A1 of 491 aas and 12 TMSs.  Expression occurs in the mesodermal region of Xenopus embryos, especially in the dorsal blastopore lip at the gastrula stage.  It is an important player during gastrulation cell movement (Suzawa et al. 2007).

GLUT1 of Xenopus laevis (African clawed frog)

 
2.A.1.1.131

Myo-inositol-specific uptake transporter, ITR1 of 509 aas and 12 TMSs.  The Km for myo-inositol is about 1 mM; glucose and other inositols are apparently not transported (Cushion et al. 2016).

ITR1 of Pneumocystis carinii

 
2.A.1.1.14

Hexose:H+ symporter of 534 aas and 12 TMSs.  Substrate accumulation can be up to 1500-fold;  one proton  is symporter per hexose taken up. Helices I, V, VII and XI interact with the sugar during translocation and line the transport path through the membrane (Tanner 2000).

Plants

Hup1 of Chlorella kessleri

 
2.A.1.1.15Putative sugar transporterArchaeaPorter of Sulfolobus solfataricus
 
2.A.1.1.16

Low-affinity hexose (glucose, fructose, mannose, 2-deoxyglucose) uniporter.  The evolution of hexose transporters in kinetoplastid protozoans has been studied (Pereira and Silber 2012).

Protozoa

Gtr2 (D2) of Leishmania donovani

 
2.A.1.1.17Glucose transporterProtozoaTh2A of Trypanosoma brucei
 
2.A.1.1.18

Glucose/mannose/fructose transporter and high affinity sensor, Snf3p (regulates glucose transport via other systems).  Residues involved in ligand preference are similar to those involved in transport (Dietvorst et al. 2010).  Snf3p in Candida glabrata is essential for growth in low glucose media but not high glucose media, and plays a role in the induction of severall hexose transporters (Ng et al. 2015).

Yeast

Snf3p of Saccharomyces cerevisiae

 
2.A.1.1.19

Glucose transporter and low affinity sensor, Rgt2p (regulates glucose transport in conjunction with Snf3p)

YeastRgt2p of Saccharomyces cerevisiae
 
2.A.1.1.2

Arabinose (xylose; galactose):H+ symporter, AraE (low affinity high capacity) (Khlebnikov et al. 2001).

Bacteria

AraE of E. coli (P0AE24)

 
2.A.1.1.20Myoinositol:H+ symporter, MITProtozoaMIT of Leishmania donovani; most similar to ITRI of Saccharomyces cerevisiae
 
2.A.1.1.21Hexose:H+ symporter, Ght2 (Glucose > Fructose)YeastGht2 of Schizosaccharomyces pombe
 
2.A.1.1.22Hexose:H+ symporter, Ght6 (Fructose > Glucose)YeastGht6 of Schizosaccharomyces pombe
 
2.A.1.1.23Gluconate:H+ symporter, Ght3YeastGht3 of Schizosaccharomyces pombe
 
2.A.1.1.24Hexose (Glucose and Fructose) transporter, PfHT1ProtozoaPfHT1 of Plasmodium falciparum
 
2.A.1.1.25

Myoinositol:H+ symporter, HMIT (also transport other inositols including scyllo-, muco- and chiro-, but not allo-inositol) (Aouameur et al., 2007). Expressed in the Golgi of the hippocampus and cortex. May also transport inositoltriphosphate (Di Daniel et al., 2009). Interacts directly with γ-secretase (9.B.47.1.1) to regulate its activity and the production of Abeta production, important in Alzheimer's disease (Teranishi et al. 2015).

Animals

SLC2A13 of Homo sapiens

 
2.A.1.1.26Major myoinositol:H+ symporter, IolTBacteriaIolT (YdjK) of Bacillus subtilis
 
2.A.1.1.27Minor myoinositol:H+ symporter, IolFBacteriaIolF of Bacillus subtilis
 
2.A.1.1.28

The erythrocyte/brain hexose facilitator, glucose transporter-1, Gtr1 or Glut1. Transports D-glucose, dehydroascorbate, arsenite and the flavonone, quercetin, via one pathway and water via a distinct channel. Sugar transport has been suggested to function via a sliding mechanism involving several sugar binding sites (Cunningham et al., 2006). Glut1 is the receptor for human T-cell leukemia virus (HTLV)) (Manel et al., 2003). It is regulated by stomatin (TC# 8.A.21) to take up dehydroascorbate (Montel-Hagen et al., 2008). Mutations cause Glut1 deficiency syndrome, a human encephalopathy that results from decreased glucose flux through the blood brain barrier (Pascual et al., 2008).  Mueckler and Makepeace (2009) have presented a model of the exofacial substrate-binding site and helical folding of Glut1. Glut1, 2, 4 and 9 are functional both in the plasma membrane and the endoplasmic reticulum (Takanaga and Frommer, 2010). Glut1 is down-regulated in the brains of Alzheimer's disease patients (Liu et al., 2008b). Metabolic stress rapidly stimulates blood-brain barrier endothelial cell sugar transport by acute up-regulation of plasma membrane GLUT1 levels, possibly involving an AMP-activated kinase activity (Cura and Carruthers, 2010). Serves as a receptor for neuropilin-1 (923aas; 2 TMSs; O14786) and heparan sulfate proteoglycans (HSPGs) (Hoshino, 2012). Glut1 has a nucleotide binding site, and nucleotide binding affects transport activity (Yao and Bajjalieh 2009).  The protein serves as a receptor for dermatin and β-adducin which help link the spectrin-actin junctional complex to the erythrocyte plasma membrane (Khan et al. 2008).  May play a role in paroxysmal dyskinesias (Erro et al. 2017).

Animals

SLC2A1 of Homo sapiens

 
2.A.1.1.29

Glucosamine/glucose uniporter, Glut-2 (may also transport dehydroascorbate (Mardones et al., 2011Maulén et al., 2003), and cotransport water against an osmotic gradient (Naftalin, 2008))

AnimalsSLC2A2 of Homo sapiens
 
2.A.1.1.3

Xylose:H+ symporter.  Also transports and binds D-glucose and 6-bromo-6-deoxy-D-glucose.  The 3-d structure is known in three conformers, outward occluded, inward occluded and inward open (Sun et al. 2012: Quistgaard et al. 2013).  Most of the sugar-binding residues are conserved with the human Glut-1, 2, 3 and 4 homologues.  The coalescence of intramolecular tunnels and cavities has been postulated to account for facilitated diffusion of sugars (Cunningham and Naftalin 2014).

Bacteria

XylE of E. coli (P0AGF4)

 
2.A.1.1.30Low affinity, constitutive, glucose (hexose; xylose) uniporter, Hxt4 (LGT1) (also transports arsenic trioxide [As(OH)3] as do Hxtl, 3, 5, 7 and 9) (Liu et al., 2004)YeastHxt4 of Saccharomyces cerevisiae
 
2.A.1.1.31

High affinity, glucose-repressible, glucose (hexose) uniporter (Hxt6/Hxt7). Asn331 and hydrophobic residue side chains in TMS5 determine substrate affinity (Kasahara et al., 2011; Kasahara and Kasahara 2010).  Also transports xylose (Wang et al. 2013).

Yeast

Hxt6/Hxt7 of Saccharomyces cerevisiae
Hxt6 (P39003)

 
2.A.1.1.32Glucose/fructose:H+ symporter, GlcP (Zhang et al., 1989)BacteriaGlcP of Synechocystis sp. (P15729)
 
2.A.1.1.33Fructose:H+ symporter, Frt1 (Diezemann and Boles, 2003)YeastFrt1 of Kluyveromyces lactis (CAC79614)
 
2.A.1.1.34The broad specificity sugar/sugar alcohol (myo-inositol, glycerol, ribose, sorbitol, mannitol, xylitol, erythritol, etc) H+ symporter, AtPLT5 (transports a wide range of hexoses, pentoses, tetroses, sugar alcohols and a sugar acid, but not disaccharides) (Reinders et al., 2005) (expressed in roots, leaves and floral organs) (Klepek et al., 2004)PlantsAtPLT5 of Arabidopsis thaliana (Q8VZ80)
 
2.A.1.1.35The major glucose (or 2-deoxyglucose) uptake transporter, GlcP (van Wezel et al., 2005)BacteriaGlcP of Streptomyces coelicolor (Q7BEC4)
 
2.A.1.1.36

The low affinity, glucose-inducible glucose transporter, MstE (Forment et al., 2006)

Fungi

MstE of Aspergillus nidulans (Q400D8)

 
2.A.1.1.37The glucose/fructose facilitator, Glut7 (SLC2A7) (a single mutation, I314V, results in loss of fructose transport but retention of glucose transport (Manolescu et al., 2005)AnimalsSLC2A7 of Homo sapiens
 
2.A.1.1.38The glycerol:H+ symporter, Stl1p (Ferreira et al., 2005)YeastStl1p of Saccharomyces cerevisiae (NP_010825)
 
2.A.1.1.39The high affinity glucose transporter, Hgt1 (Baruffini et al., 2006)YeastHgt1 of Kluyveromyces lactis (P49374)
 
2.A.1.1.4Glucose uniporterBacteriaGlf of Zymomonas mobilis
 
2.A.1.1.40The xylose facilitator, Xylhp (Nobre et al., 1999)YeastXylhp of Debaryomyces hansenii (AAR06925)
 
2.A.1.1.41The D-xylose:H+ symporter, XylT (Km=220 μM; inhibited competitively by 6-deoxyglucose (Ki=220 μM), but not by other sugars tested) (Chaillou et al., 1998)BacteriaXylT of Lactobacillus brevis (O52733)
 
2.A.1.1.42The D-glucose:H+ symporter, GlcP (glucose uptake is inhibited by 2-deoxyglucose, mannose and galactose) (Parche et al., 2006)BacteriaGlcP of Bifidobacterium longum (AAN25419)
 
2.A.1.1.43

The monosaccharide (MST) (glucose > mannose > galactose > fructose):H+ symporter, MST1 (Schussler et al., 2006).

Fungi

MST1 of Geosiphon pyriformis (A0ZXK6)

 
2.A.1.1.44The hexose (glucose and fructose but not galactose) transporter (Glut11; SLC2A11) (Scheepers et al., 2005)AnimalsSLC2A11 of Homo sapiens
 
2.A.1.1.45

Vacuolar (tonoplast) glucose transporter1, Vgt1 (important for seed germination and flowering) (Aluri and Büttner, 2007)

Plants

Vgt1 of Arabidopsis thaliana (Q8L6Z8)

 
2.A.1.1.46

The blastocyst/testis glucose transporter, Glut8 (Doege et al., 2000) (insulin stimulated in blastocysts) (Carayannopoulos et al., 2000).

Animals

Glut8 of Mus musculus (Q9JIF3)

 
2.A.1.1.47

The embryonic liver, kidney, and other tissue uric acid (urate) transporter, Glut9 (SLC2A9) (Wright et al. 2010). Mutations in this transporter cause severe renal hyperuricemia.  It transports hexoses as well as urate, the latter by an electrogenic uniport mechanism.  It's transcription is regulated by a hepatocyte nuclear factor, HNF4α (Prestin et al. 2014).

Animals

Glut9 of Mus musculus (Q5ERC7)

 
2.A.1.1.48The pentose/hexose transporter (sugar transport protein 2), STP2. (Expressed during pollen maturation and early stages of gametophyte development) (Truernit et al., 1999) Plants STP2 of Arabidopsis thaliana (Q9LNV3)
 
2.A.1.1.49The sink-specific, stress-regulated monosaccharide uptake porter, STP4. (Induced upon wounding or infection with bacteria or fungi; expressed in roots and flowers) (Truernit et al., 1996)PlantsSTP4 of Arabidopsis thaliana (Q39228)
 
2.A.1.1.5Hexose uniporterYeastHxtO of Saccharomyces cerevisiae
 
2.A.1.1.50

The glucose/fructose:H+ symporter, STP13 (sugar transport protein 13). Expressed in vascular tissues and induced during programmed cell death (Norholm et al., 2006).  Used to combat bacterial infection by competing with them for sugars by phosphorylation of STP13 by the BAK1 receptor kinase (Yamada et al. 2016).

Plants

STP13 of Arabidopsis thaliana (Q94AZ2)

 
2.A.1.1.51Glucose/xylose: H+ symporter, Gsx1 (Leandro et al., 2006)yeastGsx1 of Candida intermedia (Q2MEV7)
 
2.A.1.1.52The glucose transport protein, GTP1 (Skelly et al., 1994)AnimalsGTP1 of Schistosoma mansoni (Q26579)
 
2.A.1.1.53

Myo-Inositol uptake porter, IolT1 (Km=0.2mM) (Krings et al., 2006).  Can also transport D-glucose (Ikeda et al. 2011).

Bacteria

IolT1 of Corynebacterium glutamicum (Q8NTX0)

 
2.A.1.1.54

Myo-Inositol (Km=0.45mM) uptake porter, IolT2 (Krings et al., 2006).  Can not transport D-glucose (Ikeda et al. 2011).

Actinobacteria

IolT2 of Corynebacterium glutamicum (Q8NL90)

 
2.A.1.1.55

L-arabinose:proton symporter, AraE (Sa-Nogueira and Ramos, 1997). Also transports xylose, galactose and α-1,5 arabinobiose (Ferreira and Sá-Nogueira, 2010).

Bacteria

AraE of Bacillus subtilis (P96710)

 
2.A.1.1.56High affinity monosaccharide (KM ≈ 20 µM):H+ symporter, Stp6 (takes up glucose, 3-O-methylglucose, mannose, fructose, galactose and to a lesser extent, xylose and ribulose. (Scholz-Starke et al., 2003)PlantsStp6 of Arabidopsis thaliana (Q9SFG0)
 
2.A.1.1.57

High affinity (15 μM) glucose (monosaccharides including xylose):H+ symporter, MstA (Jørgensen et al., 2007).

Fungi

MstA of Aspergillus niger
(Q8J0V1)

 
2.A.1.1.58

Low affinity glucose:H+ symporter, MstC (Jørgensen et al., 2007).

Fungi

MstC of Aspergillus niger
(Q8J0U9)

 
2.A.1.1.59The glucose transporter, GLUT10, was originally believed to be responsible for Type 2 diabetes. It is now believed to be responsible for arterial tortuosity, a rare autosomal recessive connective tissue disease (Callewaert et al., 2007). GLUT10 transports glucose and 2-deoxy glucose (Km=0.3 mM), and is inhibited by galactose and phloretin (Coucke et al., 2006). AnimalsSLC2A10 of Homo sapiens
 
2.A.1.1.6

Galactose, glucose uniporter, Gal2. Also transports xylose (Wang et al. 2013).  This transporter has been engineered by mutation (N376F) to transport xylose without being inhibited by glucose or transporting other hexoses (Farwick et al. 2014).  The 3-d structure is known (Wang et al. 2015).

Yeast

Gal2 of Saccharomyces cerevisiae

 
2.A.1.1.60The major hexose transporter, Htr1 (mediates the active uptake of hexoses by sugar:H+ symport. Can transport glucose, 3-O-methylglucose, fructose, xylose, mannose, galactose, fucose, 2-deoxyglucose and arabinose. Confers sensitivity to galactose in seedlings. Km=20 uM for glucose) (Stadler et al., 2003; Boorer et al., 1994)PlantsHtr1 of Arabidopsis thaliana (P23586)
 
2.A.1.1.61High affinity monosaccharide (Km = 25 µM) transporter (takes up glucose, galactose, mannose, xylose and 3-O-methylglucose, but not fructose and ribose), STP11 (expressed in pollen tubes) (Schneidereit et al., 2005) PlantsSTP11 of Arabidopsis thaliana (Q9FMX3)
 
2.A.1.1.62High affinity (0.24mM) plasma membrane myoinositol-specific H+ symporter, INT4 (Schneider et al., 2006) PlantsINT4 of Arabidopsis thaliana (O23492)
 
2.A.1.1.63Low affinity inositol (myoinsoitol (Km = 1 mM), scylloinositol, d-chiroinositol and mucoinositol):H+ symporter (expressed in the anther tapetum, the vasculature, and the leaf mesophyll (Schneider et al., 2007)PlantsINT2 of Arabidopsis thaliana (Q9C757)
 
2.A.1.1.64The hexose sensor, Hxs1 (believed to be non-transporting) (Stasyk et al., 2008)YeastHxs1 of Hansenula polymorpha (B1PM37)
 
2.A.1.1.65Glucose permease GlcP (Pimentel-Schmitt et al., 2008) (most similar to 2.A.1.1.32)BacteriaGlcP of Mycobacterium smegmatis (A0QZX3)
 
2.A.1.1.66

The tonoplast H+:Inositol symporter 1, Int1 (mediates efflux from the tonoplast to the cytoplasm (Schneider et al., 2008) (most similar to 2.A.1.1.63 and 2.A.1.1.62).

Plants

Int1 of Arabidopsis thaliana (Q8VZR6)

 
2.A.1.1.67Glucose/xylose facilitator-1, GXF1 (functions by sugar uniport; low affinity (Leandro et al., 2008)YeastGXF1 of Candida intermedia (Q2MDH1)
 
2.A.1.1.68

The Glucose Transporter/Sensor Rgt2

Yeast

Rgt2 Pichia stipitis (A3M0N3)

 
2.A.1.1.69Sugar & polyol transporter 1 (SPT1): broad specificity; takes up glucose (Schilling and Oesterhelt, 2007). Loss of the first 3 TMSs of the 12 TMSs does not prevent sugar uptake or sugar recognition but lowers substrate affinity & transport rate, and abolished H+ symport (Schilling and Oesterhelt, 2007).Red algaeSPT1 of Galdieria sulphuraria (A1Z264)
 
2.A.1.1.7Quinate:H+ symporterFungiQay of Neurospora crassa
 
2.A.1.1.70

MFS Permease

Fungi

MFS Permease of Phaeosphaeria nodurum

 
2.A.1.1.71Hexose (glucose) transporter, GT4 (D2) (almost identical to 2.A.1.1.16)

Trypanosomatidae

Hexose transporter, GT4 of Leishmania mexicana (B1PLM1)

 
2.A.1.1.72

The kidney basolateral voltage-driven urate efflux transporter (URATv1) (orthologue of 2.A.1.1.47) (Anzai et al., 2008). Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses (Witkowska et al., 2012).  It transports hexoses as well as urate, the latter by a uniport mechanism.  It's transcription is regulated by a hepatocyte nuclear factor, HNF4α (Prestin et al. 2014). Residues involved in urate transport have been identified (Long et al. 2017).

Animals

SLC2A9 of Homo sapiens

 
2.A.1.1.73Glycerol uptake permease (Glycerol:H+ symporter) Stl1. (Involved in salt stress relief) (Kayingo et al. 2009) (similar to Stl1 of S. cerevisiae (2.A.1.1.38))

Yeast

Stl1 of Candida albicans (Q5A8J5)

 
2.A.1.1.74

The putative L-rhamnose porter, RhaY

Firmicutes, Actinobacteria

RhaY of Listeria monocytogenes (Q926Q9)

 
2.A.1.1.75

The fructose/xylose:H+ symporter, PMT1 (polyol monosaccharide transporter-1). Also transports other substrates at lower rates. PMT2 is largely of the same sequence and function. Both are present in pollen and young xylem cells (Klepek et al., 2005).

Plants

PMT1 of Arabidopsis thaliana (Q9XIH7)

 
2.A.1.1.76

Glucose transporter, GT1. GT1, 2, and 3 are homologues. GT2 and GT3 transport ribose as well as glucose at different rates. GT3 transports ribose with 6-fold lower efficiency due to two threonines in GT3 that are alanines in GT2. They are in two loops between TMSs 3, 4, and 7, 8 (Naula et al., 2010). GT1 is expressed in the flagellar membrane and may be both a glucose transporter and sensor, allowing the parasites to enter the stationary phase when they deplete glucose although in the absence of the sensor, they lose viability (Rodriguez-Contreras et al. 2015).

Eukaryota

GT1 of Leishmania mexicana (Q9F315)

 
2.A.1.1.77

The D-glucose/D-ribose transporter, LmGT2 (Most similar to 1.A.1.1.18) (Naula et al., 2010).

Protozoa

LmGT2 of Leishmania mexicana (O61059)

 
2.A.1.1.78

The glucose transporter, LmGT3 (homologous to LmGT2 (1.A.1.1.75)). Two threonine residues located in the hydrophilic loops connecting TMSs 3 & 4 and 7 & 8 of GT3 prevent transport of D-ribose. Changing these two residues to alanine (as in GT2) allows transport of ribose. Thus, loops 3-4 and 7-8 partially determine substrate specificity (Naula et al., 2010).

Protozoa

LmGT3 of Leishmania mexicana (O61060)

 
2.A.1.1.79

Polyol (xylitol):H+ symporter, PLT4 (Kalliampakou et al., 2011)

 

Plants

PLT4 of Lotus japonicus (Q1XF07)

 
2.A.1.1.8

Myoinositol:H+ symporter

 

 

Yeast

ITR1 of Saccharomyces cerevisiae

 
2.A.1.1.80

Insulin-responsive facilitative glucose transporter in skeletal and cardiac muscle, adipose, and other tissues, Glut4 (GTR4; SLC2A4; 509aas). Defects in Glut4 cause noninsulin-dependent diabetes mellitus (NIDDM). Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor (Gonzalez et al., 2011). The first luminal loop confers insulin responsiveness to GLUT4 (Kim and Kandror, 2012). Exercise increases Glut4 synthesis in a process involving several protein kinases, the Glut4 enhancer factor (GEF; SLC2A4 regulator; Q9NR83), and the myocyte enhancing factor 2 (MEF2; NP_001139257). (McGee and Hargreaves 2006; Wright 2007; Zorzano et al. 2005)

AnimalsSLC2A4 of Homo sapiens
 
2.A.1.1.81

The glucose uptake porter, GluP (Araki et al., 2011).

Bacteria

GluP of Rhodococcus jostii (Q0SE66)

 
2.A.1.1.82

The cellobiose/cellodextrin transporter, Cdt-1 (Galazka et al., 2010)

Fungi

Cdt-1 of Neurospora crassa (Q7SCU1)

 
2.A.1.1.83

The cellobiose/cellodextrin transporter, Cdt-2

Fungi

Cdt2 of Neurospora crassa (Q7SD12)

 
2.A.1.1.84

The heteromeric TMT1/TMT2 glucose/sucrose:H+ antiporter. Catalyzes glucose/sucrose antiport into vacuoles (Schulz et al., 2011).

Plants

The TMT1/2 sugar:H+ anti-porter of Arabidopsis thaliana. TMT1 (Q96290). TMT2 (Q8LPQ8).

 
2.A.1.1.85

Zebrafish Slc2A10 (Glut10) facilitative glucose transporter.

Animals

Zebrafish Glut10 of Danio rerio (A8KB28)

 
2.A.1.1.86

The sea bream facilitative glucose transporter 1 (GLUT1) (Balmaceda-Aguilera et al., 2012).

Animals

Glut1 of Sparus aurata (H9BPB6)

 
2.A.1.1.87 solute carrier family 2 (facilitated glucose transporter), member 12AnimalsSLC2A12 of Homo sapiens
 
2.A.1.1.88 solute carrier family 2 (facilitated glucose transporter), member 6AnimalsSLC2A6 of Homo sapiens
 
2.A.1.1.89Solute carrier family 2, facilitated glucose transporter member 8 (Glucose transporter type 8) (GLUT-8) (Glucose transporter type X1)AnimalsSLC2A8 of Homo sapiens
 
2.A.1.1.9Lactose, galactose:H+ symporterYeastLacP of Kluyveromyces lactis
 
2.A.1.1.90Solute carrier family 2, facilitated glucose transporter member 14 (Glucose transporter type 14) (GLUT-14)AnimalsSLC2A14 of Homo sapiens
 
2.A.1.1.91Solute carrier family 2, facilitated glucose transporter member 3 (Glucose transporter type 3, brain) (GLUT-3)AnimalsSLC2A3 of Homo sapiens
 
2.A.1.1.92

Inner membrane metabolite transport protein YdjE

Bacteria

YdjE of E. coli

 
2.A.1.1.93Vacuolar protein sorting-associated protein 73FungiVPS73 of Saccharomyces cerevisiae
 
2.A.1.1.94Putative metabolite transport protein YDL199CFungiYDL199C of Saccharomyces cerevisiae
 
2.A.1.1.95

Inner membrane metabolite transport protein YgcS

Bacteria

 

YgcS of E. coli

 
2.A.1.1.96Probable metabolite transport protein YBR241CFungiYBR241C of Saccharomyces cerevisiae
 
2.A.1.1.97Sugar transporter ERD6 (Early-responsive to dehydration protein 6) (Sugar transporter-like protein 1)PlantsERD6 of Arabidopsis thaliana
 
2.A.1.1.98Sugar transporter ERD6-like 6PlantsAt1g75220 of Arabidopsis thaliana
 
2.A.1.1.99Facilitated trehalose transporter Tret1-1 (DmTret1-1)AnimalsTret1-1 of Drosophila melanogaster
 


2.A.1.10 The Nucleoside: H+ Symporter (NHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.10.1

Nucleoside porter, NupG.  Guanosine, inosine, cytidine and thymidine but not uridine, adenosine and xanthosine are transported (Patching et al. 2005).

Bacteria

NupG of E. coli (P0AFF4)

 
2.A.1.10.2

Xanthosine porter, XapB.  Xanthosine, inosine, adenosine, cytidine and thymidine but not guanosine and uridine are transported (Seeger et al. 1995; Nørholm and Dandanell 2001).

Bacteria

XapB of E. coli

 
2.A.1.10.3Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2-glucosyltransferase (EC 2.4.1.256) (Alpha-1,2-glucosyltransferase ALG10-A) (Alpha-2-glucosyltransferase ALG10) (Asparagine-linked glycosylation protein 10) (Dolichyl-phosphoglucose-dependent glucosyltransferase ALG10)FungiDIE2 of Saccharomyces cerevisiae
 
2.A.1.10.4

Putative ribonucleoside transporter, YegT, of 450 aas and 12 TM

Bacteria

YegT of Escherichia coli

 


2.A.1.11 The Oxalate:Formate Antiporter (OFA) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.11.1

The oxalate:formate antiporter.  Residues and TMSs involved in the translocation pathway and substrate binding have been identified (Fu and Maloney 1998; Fu et al. 2001; Ye and Maloney 2002; Wang et al. 2006).

Bacteria

OxlT of Oxalobacter formigenes

 
2.A.1.11.2

Putative MFS transporter of 399 aas; 12 TMSs.

Bacteria

MFS porter of Pseudomonas aeruginosa (Q9I458)

 
2.A.1.11.3

Inner membrane protein yhjX.  Regulated by Crp as well as the LytS-like histidine sensor kinase, YehU, and the corresponding LytTR-like response regulator, YehT.  Possibly induced by peptides as cells enter the stationary growth phase.  Forms a complex with the csiA transporter, YjiY (TC# 2.A.114.1.9) and two sensor kinase/response regulator pairs, YehU/YehT and YdpA/YdpB (Behr et al. 2014).  The carbon storage regulator A (CsrA) is involved in posttranscriptional regulation of both yjiY and yhjX (Behr et al. 2014).

Bacteria

yhjX of Escherichia coli

 
2.A.1.11.4Uncharacterized membrane protein YJL163CFungiYJL163C of Saccharomyces cerevisiae
 
2.A.1.11.5

MFS-type transporter YcxA (ORF5) of 408 aas and 12 TMSs.  Capable of exporting the peptide antibiotic, surfactin, synthsized by a non-ribosome mechanism in B. subtilis (Li et al. 2015).

Firmicutes

YcxA of Bacillus subtilis

 
2.A.1.11.6

Uncharacterized MFS-type transporter YbfB

Bacilli

YbfB of Bacillus subtilis

 
2.A.1.11.7

Uncharacterized protein of 512 aas and 12 TMSs.

Rhodophyta

UP of Chondrus crispus

 
2.A.1.11.8

Uncharacterized protein of 404 aas

Proteobacteria

UP of Pseudomonas aeruginosa

 


2.A.1.12 The Sialate:H+ Symporter (SHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.12.1

The sialic acid porter, NanT.  N-acetylneuraminic acid (Neu5Ac) serves as a sole source of carbon and nitrogen for E. coli.  It is a mucus-derived carbon source in the mammalian gut. NanT can also take up and allow efficient growth on the related sialic acids, N-glycolylneuraminic acid (Neu5Gc) and 3-keto-3-deoxy-d-glycero-d-galactonononic acid (KDN) (Hopkins et al. 2013).

Bacteria

NanT of E. coli

 
2.A.1.12.2

The lactate/pyruvate:H+ symporter. Residues in the substrate translocation pathway have been reported (Soares-Silva et al., 2011).

Yeast

Jen1 (YKL217w) of Saccharomyces cerevisiae

 


2.A.1.13 The Monocarboxylate Transporter (MCT) Family (Halestrap, 2011)

MCTs play roles in the absorption, tissue distribution, and clearance of both endogenous and exogenous compounds. MCTs are required for the transport of essential cell nutrients and for cellular metabolic and pH regulation (Jones and Morris 2016).


Examples:

TC#NameOrganismal TypeExample
2.A.1.13.1

The proton-linked monocarboxylate (lactate, pyruvate, mevalonate, branched chain oxo acids, β-hydroxybutyrate, γ-hydroxybutyrate, butyrate, acetoacetate acetate and formate) uptake/efflux porter (Moschen et al. 2012). Also transports anti-tumor agents, 3-bromopyruvate and dichloroacetate (Cooper et al. 1989; Su et al. 2016). Activity is stimulated by direct interaction with carbonic anhydrase isoform II (Becker et al., 2005). This transporter interacts physically with the chaperone protein Basigin (CD147; TC #8.A.23.1.1) which is required both for targetting to the plasma membrane and for activity. Mct-2 uses a different chaperone protein, GP70. Mct-1 also transports the methionine hydroxy analogue 2-hydroxy (4-methylthio) butanate (Martin-Venegas et al., 2007; Becker and Deitmer, 2008). MCT1, 3 and 4 require the ancillary protein, basigin (P35613; 8.A.23.1.1) for plasma membrane localization (Ovens et al., 2010).  Partially localizes to the peroxysomal membrane (Visser et al. 2007). MCT1 is regulated by CD147 proteins, and this association is important for lactate export and cell proliferation in certain cancer cells (Walters et al. 2013).  Upregulated in some cancers and maintains the metabolic phenotype of these cancer cells by mediating lactate efflux together with a proton, promoting pH homeostasis (PMID 24921258). 

Animals

MCT1 (SLC16A1) of Homo sapiens

 
2.A.1.13.10

MCT8 (SLC16a2) homodimeric monocarboxylate thyroid hormone transporter 8 (Visser et al. 2009; Arjona et al., 2011).  The X-linked mental retardation Allan-Herndon-Dudley syndrome (AHDS) (a severe psychomotor retardation syndrome) protein (Schweizer and Köhrle 2012; Boccone et al. 2010; Johannes et al. 2016). Arg residues important for function have been identified (Groeneweg et al. 2013).  Thyroid hormone transporters in the brain and across the blood brain barrier have been reviewed (Wirth et al. 2014; Bernal et al. 2015).

Animals

SLC16A2 of Homo sapiens

 
2.A.1.13.11

Solute carrier family 16, member 5 (monocarboxylic acid transporter 6) of 505 aas and 12 TMSs. Found on the luminal side of small intestinal epithelial cells (Kohyama et al. 2013). MCT6 mediates uptake of nateglinide, an oral hypoglycemic agent. The K(t) for nateglinide is 46 μM. Thus, MCT6 may play a role in the intestinal absorption of nateglinide, although other transporters are also likely to be involved (Kohyama et al. 2013).

Animals

SLC16A5 of Homo sapiens

 
2.A.1.13.12

Solute carrier family 16, member 14 (monocarboxylic acid transporter 14), ATBo or MCT14.  Transports carnitine with low affinity (~ 1 mM) (Ingoglia et al. 2015). Its tissue localization in the mouse has been determined (Roshanbin et al. 2016).

 

Animals

SLC16A14 of Homo sapiens

 
2.A.1.13.13 solute carrier family 16, member 11 (monocarboxylic acid transporter 11)AnimalsSLC16A11 of Homo sapiens
 
2.A.1.13.14 solute carrier family 16, member 12 (monocarboxylic acid transporter 12)AnimalsSLC16A12 of Homo sapiens
 
2.A.1.13.15Monocarboxylate transporter 7 (MCT 7) (Monocarboxylate transporter 6) (MCT 6) (Solute carrier family 16 member 6)AnimalsSLC16A6 of Homo sapiens
 
2.A.1.13.16Monocarboxylate transporter 9 (MCT 9) (Solute carrier family 16 member 9)AnimalsSLC16A9 of Homo sapiens
 
2.A.1.13.17Monocarboxylate transporter 13 (MCT 13) (Solute carrier family 16 member 13)AnimalsSLC16A13 of Homo sapiens
 
2.A.1.13.18Probable transporter MCH2FungiMCH2 of Saccharomyces cerevisiae S288c
 
2.A.1.13.19Probable transporter MCH4FungiMCH4 of Saccharomyces cerevisiae
 
2.A.1.13.2

The low affinity aromatic amino acid (Tyr, Trp, Phe) transporter, TAT1 (T-type amino acid transporter), MCT10, Slc16a10.  Also transports N-methyl amino acids and thyroid hormones.  Essential for aromatic amino acid homeostasis in various tissues of mice (Mariotta et al. 2012). MCT10 is 58% identical to MCT8. Both transporters mediate T3 transport, but while MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10.  A few amino acyl residue substitutions in the human orthologue broadens the substrate specificity of this porter (Johannes et al. 2016).

Animals

Tat1 of Rattus norvegicus

 
2.A.1.13.20

Putative permease of 468 aas

Rhdophyta

Putative permease of Galdieria sulphuraria

 
2.A.1.13.21

MFS porter of 392 aas

Proteobacteria

MSF porter of Pseudomonas stutzeri

 
2.A.1.13.22

SLC16 Family protein of 771 aas and 12 TMSs, GEM-1.  GEM-1 acts in parallel to the GON-2 channel (TC# 1.A.4.5.10) to promote cation uptake within the developing gonad (Kemp et al. 2009).

Animals

Gem1 of Caenorhabditis elegans

 
2.A.1.13.23

Chicken MCT8 of 509 aas and 12 TMSs.  Transports pro-thyroid hormone, T4, with high affiinity, and T3 as well (Nele Bourgeois et al. 2016).

MCT8 of Gallus gallus (Chicken)

 
2.A.1.13.24

MCT10 (SLC16A10) of 400 aas and 11 TMSs.  Transports thyroid hormones, especially T3 (Nele Bourgeois et al. 2016).

MTC10 of Gallus gallus (chicken)

 
2.A.1.13.25

Thyroid hormones (TH) transporter, MCT8 of 526 aas and 12 TMSs (Zada et al. 2017).

TH transporter of Danio rerio (Zebrafish) (Brachydanio rerio)

 
2.A.1.13.26

Thyroid hormones (TH) transporter, MCT10 of 505 aas and 12 TMSs.

MCT10 of Danio rerio (Zebrafish) (Brachydanio rerio)

 
2.A.1.13.3

The thyroid hormone transporter, MCT8 (transports L- and D-isomers of thyroxine (T4), 3,3',5-triiodothyronine (T3), 3,3'5'-triiodothyronine (rT3) and 3,3'-diiodothyronine [Km values = 2-5 μM; Leu, Phe, Trp and Tyr were not transported]) (Friesema et al., 2003). Loss of function mutations in MCT8 leads to Allan-Herndon-Dudley syndrome, severe X-linked psychomotor retardation and elevated serum T3 levels (Jansen et al., 2008). Essential molecular determinants for thyroid hormone transport and their structural implications are presented by Kinne et al. (2010). Induced by retinoic acid (Kogai et al., 2010). Mediates energy-independent bidirectional transport. MCT8 is specific for L-iodothyronines and requires at least one iodine atom per aromatic ring. Thyronamines, decarboxylated metabolites of iodothyronines, triiodothyroacetic acid and tetraiodothyroacetic acid, TH derivatives lacking both chiral center and amino group, are not substrates (Kinne et al., 2010). A deficiency causes altered thyroid morphology and a persistent high triiodothyronine/thyroxine ratio after thyroidectomy (Wirth et al., 2011). Primary and secondary thyroid hormone transporters have been reviewed (Kinne et al., 2011).

Animals

MCT8 of Mus musculus (O70324)

 
2.A.1.13.4

The high affinity (17 μM) facilitated diffusion, riboflavin-regulated riboflavin uptake system, Mch5 (Reihl and Stolz, 2005)

Yeast

Mch5 of Saccharomyces cerevisiae (NP_014951)

 
2.A.1.13.5

Monocarboxylate transporter-2 (MCT2). Transports γ-hydroxybutyrate (Wang and Morris, 2007). MCT2 requires the ancillary protein, embigin (Q6PCB8; 8.A.23.1.2) for plasma membrane localization (Ovens et al., 2010).  Partially localizes to the peroxysomal membrane (Visser et al. 2007).

Animals

MCT2 (SLC16A7) of Homo sapiens

 
2.A.1.13.6

Plasma membrane proton-linked monocarboxylate transporter, MCT4 (SLC16A3). Catalyzes the rapid plasma membrane transport of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate.  Catalyzes lactate efflux from glycolyzing cells (Halestrap 2013).  Residues involved in high affinity inhibitors have been identified (Nancolas et al. 2015).  Forms a complex with binding partner, CD147/BSG, which regulates the transport activity (Fisel et al. 2015).

Animals

MCT4 (SLC16A3) of Homo sapiens

 
2.A.1.13.7

Monocarboxylate transporter-5 (MCT5 or SLC16A4; sometimes referred to as MCT4). Lactate transport via the MCT5 is non enzymatically stimulated by carbonic anhydrase II (Becker et al., 2010). MCTs require an ancillary 1TMS glycoprotein, either Embigin (Q6PCB8; TC# 8.A.23.1.2) or basigin (P35613; TC# 8.A.23.1.1) for plasma membrane localization (Ovens et al., 2010).  Upregulated in some cancers and maintains the metabolic phenotype of these cancer cells by mediating lactate efflux together with a proton, promoting pH homeostasis (Baltazar et al. 2014).  Also transports the chemotheraputic agent, 3-bromopyruvate (Baltazar et al. 2014).

Animals

SLC16A4 of Homo sapiens

 
2.A.1.13.8

Monocarboxylate transporter, MCTI0. Transports thyroid horomones (Visser et al., 2010). Primary and secondary thyroid hormone transporters have been reviewed (Kinne et al., 2011).

AnimalsSLC16A10 of Homo sapiens
 
2.A.1.13.9

Short chain monocarboxylate (lactate) transporter 3, MCT3. MCT1, 3 and 4 require the ancillary protein, basigin (P35613; 8.A.23.1.1) for plasma membrane localization (Ovens et al., 2010).

AnimalsSLC16A8 of Homo sapiens
 


2.A.1.14 The Anion:Cation Symporter (ACS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.14.1Glucarate porterBacteriaGudT of Bacillus subtilis
 
2.A.1.14.10

Lysosomal sialate transporter (Salla disease and infantile sialate storage disease protein (Morin et al., 2004)). Also transports glucuronic acid and aspartate. Structure-function studies have identify crucial residues and substrate-induced conformational changes (Courville et al., 2010). Also called SLC17A5. The substrate binding pocket has been identified based on modeling studies (Pietrancosta et al., 2012).  NAAG (N-acetylaspartylglutamate) an abundant neuropeptide in the vertebrate nervous system that is released from synaptic terminals in a calcium-dependent manner and acts as an agonist at the type II metabotropic glutamate receptor mGluR3, is transported into synaptic vesicles before it is secreted. Lodder-Gadaczek et al. 2013 demonstrate that vesicular uptake of NAAG and the related peptide NAAG2 (N-acetylaspartylglutamylglutamate) is mediated by sialin (SLC17A5). Sialin is probably the only vesicular transporter for NAAG and NAAG2, because transport of both peptides was not detectable in vesicles isolated from sialin-deficient mice.  Sialin also transports nitrate in the plasma membrane of salivary glands (Qin et al. 2012).

Animals

SLC17A5 of Homo sapiens

 
2.A.1.14.11Plasma membrane, high affinity nicotinate permease, Tna1YeastTna1 of Saccharomyces cerevisiae
 
2.A.1.14.12Plasma membrane, high affinity biotin:H+ symporter, Vht1YeastVht1 of Saccharomyces cerevisiae
 
2.A.1.14.13

Broad specificity brain synaptic vesicle anion:Na+ symporter (transports glutamate, phosphate, chloride, etc.)(BNPI, EAT-4, VGLUT1) Chloride and ketone bodies regulate VGLUT activities (Omote et al., 2011). 

Animals

BNPI of Rattus norvegicus

 
2.A.1.14.14

Probable D-galactarate (glucarate?):H+ symporter, GarP or YhaU.  May also function as a glucarate:glycerate antiporter (Moraes and Reithmeier 2012).

Bacteria

GarP (YhaU) of E. coli

 
2.A.1.14.15Apical membrane renal proximal tubule. Voltage-driven but Na+-independent organic anion transporter, OATv1 (transports p-aminohippurate; probably transports organic anions but not cations and not inorganic phosphate. It may catalyze excretion of various drugs, xenobiotics, and their metabolites) (Jutabha et al., 2003)AnimalsOATv1 of Sus scrofa (Q7YQJ7)
 
2.A.1.14.16

The broad specificity brain synaptic vesicle anion transporter (transports glutamate in a Δψ-dependent fashion requiring Cl- but phosphate by a Na+-dependent mechanism via a different pathway/mechanism (Juge et al., 2006). VGLUT1-3 concentrate glutamate into synaptic vesicles before its exocytotic release.

Animals

VGLUT2 of Rattus norvegicus (Q9JI12)

 
2.A.1.14.17Pantothenate:H+ symporter, Liz1 (mutants cause abnormal mitosis due to a defect in ribonucleotide reductase) (Stolz et al., 2004)YeastLiz1 of Schizosaccharomyces pombe (O43000)
 
2.A.1.14.18Pantothenate:H+ symporter, Fen2YeastFen2 of Saccharomyces cerevisiae (P25621)
 
2.A.1.14.19Plasma membrane, high affinity vitamin H transporter 1 (H+:biotin symporter), Vht1 (Stolz, 2003)YeastVht1 of Schizosaccharomyces pombe (O13880)
 
2.A.1.14.2

Hexuronate (glucuronate; galacturonate) porter, ExuT (Nemoz et al. 1976).

Bacteria

ExuT of E. coli (P0AA78)

 
2.A.1.14.20

Endoplasmic reticular cysteine transporter, Yct1 (Kaur and Bachhawat, 2007)

Yeast

Yct1 of Saccharomyces cerevisiae (Q12235)

 
2.A.1.14.21

The vesicular purine nucleotide (ADP, ATP, GTP) transporter. (Found in synaptic vesicles and chromafin granules, SLC17A9 (Sawada et al., 2008)).  Associated with disseminated superficial actinic porokeratosis (DSAP), a rare autosomal dominant genodermatosis (Cui et al. 2014).

Animals

SLC17A9 of Homo sapiens

 
2.A.1.14.22

The chloroplast thylakoid Na+:phosphate symporter, ANTR1 (512aas) (Pavón et al., 2008). Residues essential for function have been identified (Ruiz-Pavón et al., 2010). Functionally important amino acids have been identified (Ruiz-Pavón et al., 2010).

Plants

ANTR1 of Arabidopsis thaliana (O82390)

 
2.A.1.14.23

Vesicular glutamate transporter #3 (VGLUT3) [Its absence in mice causes sensorineural deafness and seizures]. 70% identical to VGLUT2 (TC# 2.A.1.14.16) (Gras et al., 2002). VGLUT1-3 concentrate glutamate into synaptic vesicles before its exocytotic release and contribute to the regulation of serotonergic transmission and anxiety (Amilhon et al., 2010). It may catalyze uptake of the neurotransmitter coupled with H+ export and K+ uptake (Farsi et al. 2016).

Animals

VGLUT3 of Mus musculus (Q8BFU8)

 
2.A.1.14.24

Intestinal mucosal sodium/phosphate symporter, SLC17A4. Maintains phosphate homeostasis; mediates intestinal absorption, bone deposition and resorption and renal excretion.

AnimalsSLC17A4 of Homo sapiens
 
2.A.1.14.25

The putative D-mannuronate porter, AlgT (Rodionov et al., 2010).

Proteobacteria

AlgT of Shewanella frigidimarina (Q07YH1)

 
2.A.1.14.26

The plasma membrane Lethal (2)01810 glutamate uptake porter (Km=0.07μM) (Inhibited by aspartate) (Shim et al., 2011)

Animals

L(2)01810 of Drosophila melanogaster (F2YPN7)

 
2.A.1.14.27

Voltage-driven Na+:phosphate cotransporter; solute carrier family 17, member 1.  Orthologous to 2.A.1.14.6.  Transports other anions including urate; functions in urate cell elimination at the renal apical membrane (Prestin et al. 2014).

Animals

SLC17A1 of Homo sapiens

 
2.A.1.14.28

Solute carrier family 17 (sodium phosphate), member 3.  Catalyzes voltage-driven Na+:phosphate cotransport, but also functions in cell elimination of urate at renal tubular cell apical membranes (Prestin et al. 2014).

Animals

SLC17A3 of Homo sapiens

 
2.A.1.14.29Sodium-dependent phosphate transport protein 3 (Na(+)/PI cotransporter 3) (Sodium/phosphate cotransporter 3) (Solute carrier family 17 member 2)AnimalsSLC17A2 of Homo sapiens
 
2.A.1.14.3Putative tartrate porterBacteriaTtuB of Agrobacterium vitis
 
2.A.1.14.30

Vesicular glutamate transporter 1, VGluT1. Brain-specific Na+-dependent inorganic phosphate cotransporter; Solute carrier family 17 member 7). Several proteins must be retrieved to the synatic vesicle before it can export neurotransmitters again, and cargo retrieval is a collective cargo-driven process, dependent on VGluT1 (Pan et al. 2015).

Animals

SLC17A7 of Homo sapiens

 
2.A.1.14.31Vesicular glutamate transporter 2 (VGluT2) (Differentiation-associated BNPI) (Differentiation-associated Na(+)-dependent inorganic phosphate cotransporter) (Solute carrier family 17 member 6)AnimalsSLC17A6 of Homo sapiens
 
2.A.1.14.32

Vesicular glutamate transporter 3 (VGluT3) (Solute carrier family 17 member 8). Loss in mice produces circadian-dependent hyperdopaminergia and amiliorates motor disfunction and dopa-mediated dyskinesias in a model of Parkinson's Disease (Divito et al. 2015). VGLUT3 is expressed selectively in the inner hair cells (IHCs) and transports the neurotransmitter glutamate into synaptic vesicles. Mutation of the SLC17A8 gene is associated with DFNA25 (deafness, autosomal dominant 25), a non-syndromic hearing loss (ADNSHL) in humans (Ryu et al. 2016; ).

Animals

SLC17A8 (VGluT3) of Homo sapiens

 
2.A.1.14.33

Putative L-galactonate transporter, YjjL

Bacteria

YjjL of Escherichia coli

 
2.A.1.14.34Putative inorganic phosphate cotransporterAnimalsPicot of Drosophila melanogaster
 
2.A.1.14.35Inner membrane transport protein RhmTBacteria

RhmT of Escherichia coli

 
2.A.1.14.36Thiamine pathway transporter THI73FungiTHI73 of Saccharomyces cerevisiae
 
2.A.1.14.37Probable transporter SEO1FungiSEO1 of Saccharomyces cerevisiae
 
2.A.1.14.38

Transporter YIL166c (Hellborg et al. 2008) of 542 aas and 12 TMSs. May transport inorganic sulfur-containing compounds such as sulfate, sulfite, thiosulfate and sulfonates.

Fungi

YIL166c of Saccharomyces cerevisiae

 
2.A.1.14.39Uncharacterized transporter YybOBacilli

YybO of Bacillus subtilis

 
2.A.1.14.4Dipeptide (e.g., Gly-Leu), allantoate, ureidosuccinate, allantoin porter (Cai et al., 2007).YeastDal5 of Saccharomyces cerevisiae
 
2.A.1.14.40

Glucarate transporter, GudP.  Encoded in an operon with GudD, a glucarate dehydratase (Moraes and Reithmeier 2012).

Bacteria

GudP of E. coli

 
2.A.1.14.41

The Aldohexuronate (glucuronate, galacturonate) uptake porter (Valmeekam et al. 2001).

Proteobacteria

ExuT of Erwinia chrysanthemi  This sequence is incomplete.

 
2.A.1.14.42

Vesicular glutamate transporter, EAT-4/VGLUT of 576 aas (Serrano-Saiz et al. 2013).  EAT-4 is responsible for loading glutamate into synaptic vesicles, and thus in defining the glutamatergic phenotype of a neuron (Serrano-Saiz et al. 2013). 

Animals

EAT-4 of Caenorhabditis elegans

 
2.A.1.14.43

Uncharacterized but putative sulfonate (and other inorganic sulfur-containing compounds) uptake transporter of 537 aas and 12 TMSs.

UP of Ashbya gossypii (Yeast) (Eremothecium gossypii)

 
2.A.1.14.44

Vesicular Glutamate transporter, VGlut of 632 aas and 10 TMSs with the N- and C-termini in the cytoplasm (Fei et al. 2007).

VGlut of Drosophila melanogaster

 
2.A.1.14.5Phthalate porterBacteriaPht1 of Pseudomonas putida
 
2.A.1.14.6

Na:Pi symporter, NPT1 or SLC17A1. (Renal chloride-dependent polyspecific anion exporter; transports organic acids such as p-aminohippurate, ureate, and acetylsalicylate (asprin)). Catalyzes ureate excretion. A mutant form shows increased risk of gout in humans.

Animals

Npt1 of Mus musculus

 
2.A.1.14.7Galactonate transporterBacteriaDgoT (YidT) of E. coli (P0AA76)
 
2.A.1.14.8Phthalate porterBacteriaOphD of Burkholderia cepacia
 
2.A.1.14.9Putative p-hydroxyphenylacetate porterBacteriaHpaX of Salmonella dublin
 


2.A.1.15 The Aromatic Acid:H+ Symporter (AAHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.15.1

4-Hydroxybenzoate/protocatechuate porter (Nichols and Harwood 1997).

Bacteria

PcaK of Pseudomonas putida

 
2.A.1.15.10

The gentisate (2,5-dihydroxybenzoate) uptake porter, GenK (does not take up either benzoate or 3-hydoxybenzoate).

Bacteria

GenK of Corynebacterium glutamicum (Q8NLB7)

 
2.A.1.15.11

The Vanillate porter, VanK 

Bacteria

VanK of Corynebacterium glutamicum (Q6M372)

 
2.A.1.15.12

Inner membrane transport protein YdiM.  Catalyzes export of medium chain alcohols such as isoprenol (Wang et al. 2015).

Bacteria

YdiM of Escherichia coli

 
2.A.1.15.13

Inner membrane transport protein, YdiN (similar to 2.A.1.15.12).  Induced under carbon limitation but not phosphate limitation (Johansson and Lidén 2006).

Bacteria

YdiN of Escherichia coli

 
2.A.1.15.14

Probable uptake transporter for 2,4-dichlorophenoxyacetic acid (2,4-D), CadK (Kitagawa et al. 2002).

Proteobacteria

CadK of Bradyrhizobium sp. HW13

 
2.A.1.15.15

Unncharacterized permease of 436 aas and 12 TMSs.

Spirochaetes

UP of Treponema brennaborense

 
2.A.1.15.16

MFS uptake permease.  The gene is adjacent to a putative SAM-dependent methyl transferase, one homologue of which is a puromycin methyl transferase.  Perhaps the transport substrate is a drug that is modified by methylation for detoxification purposes. 

δ-Proteobacteria

MFS uptake permease of Myxococcus xanthus

 
2.A.1.15.17

Fused protein with N-terminal transmembrane region of 7 putative TMSs and a C-terminal hydrophilic domain homologous to SAM-dependent spermidine synthase.  The N-terminus of this protein shows extensive sequence similarity with 2.A.1.15.16 but shows weak similarity with other MFS permeases.

γ-Proteobacteria

Fused protein of Thiocapsa marina

 
2.A.1.15.2

MhpT. A specific 3-(3-hydroxyphenyl)propionate (3HPP) transporter; vital for E. coli K-12 W3110 to grow on this substrate.  Transports 3HPP but not benzoate, 3-hydroxybenzoate or gentisate (Xu et al. 2013).  May also export arabinose but not xylose (Koita and Rao 2012).

Bacteria

MhpT of E. coli

 
2.A.1.15.3

2,4-Dichlorophenoxyacetate porter (Hawkins and Harwood 2002).

Bacteria

TfdK of Ralstonia eutropha

 
2.A.1.15.4

cis,cis-muconate porter, MucK (Williams and Shaw 1997).

Bacteria

MucK of Acinetobacter sp. ADP1

 
2.A.1.15.5Benzoate porter, BenKBacteriaBenK of Acinetobacter sp. ADPP1
 
2.A.1.15.6

Vanillate porter, VanK

Bacteria

VanK of Acinetobacter sp. ADP1

 
2.A.1.15.7

Aromatic compound (benzoate) uptake transporter of 450 aas (Clark et al. 2002).

Proteobacteria

BenK of Acinetobacter baylyi

 
2.A.1.15.8Probable 1-hydroxy-2-naphthoate transporter, orf1 (Iwabuchi and Harayama, 1997). BacteriaOrf1 of Nocardioides sp. (O24723)
 
2.A.1.15.9Probable 4-methylmuconolactone transporter, MmlH (Erb et al., 1998)BacteriaMmlH of Ralstonia eutropha (O51798)
 


2.A.1.16 The Siderophore-Iron Transporter (SIT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.16.1

Siderophore-iron (ferrioxamine):H+ symporter, Sit1 (Arn3) (in vesicles)

Yeast

Sit1 (YEL065w) of Saccharomyces cerevisiae

 
2.A.1.16.2The ferric enterobactin:H+ symporter, Enb1YeastEnb1 (YOL158c) of Saccharomyces cerevisiae
 
2.A.1.16.3The ferric triacetylfusarinine C:H+ symporter, Taf1YeastTaf1 (YHL047c) of Saccharomyces cerevisiae
 
2.A.1.16.4The ferrichrome:H+ symporter, Arn1p (Moore et al., 2003)YeastArn1 of Saccharomyces cerevisiae (NP_011823)
 
2.A.1.16.5Siderophore iron transporter 2Yeaststr2 of Schizosaccharomyces pombe
 
2.A.1.16.6

Siderophore iron transporter 1, Str1

Yeast

Str1 of Schizosaccharomyces pombe

 
2.A.1.16.7

Ferri-siderophore transporter, MirB. Transports hydroxamate siderophores such as triacetylfusarinine C (TAFC) (Raymond-Bouchard et al. 2012).

Fungi

MirB of Emericella nidulans

 


2.A.1.17 The Cyanate Porter (CP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.17.1

Cyanate transport system, CynT.  Encoded with cyanate aminohydrolase, CynS, and carbonic anhydrase, CynX (Anderson et al. 1990; Moraes and Reithmeier 2012).

Bacteria

CynX of E. coli

 
2.A.1.17.2

Glucose transporter, OEOE_0819. Does not transport fructose (Kim et al., 2011)

Firmicutes

OEOE_0819 of Oenococcus onei (Q04FN1)

 
2.A.1.17.3

Inner membrane transport protein YeaN

Bacteria

YeaN of Escherichia coli

 


2.A.1.18 The Polyol Porter (PP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.18.1D-Arabinitol:H+ symporterBacteriaDalT of Klebsiella pneumoniae
 
2.A.1.18.2Ribitol:H+ symporterBacteriaRbtT of Klebsiella pneumoniae
 
2.A.1.18.3Alpha-ketoglutarate permeaseBacilli

CsbX of Bacillus subtilis

 


2.A.1.19 The Organic Cation Transporter (OCT) Family (The SLC22A family including OCT1-3, OCTN1-3 and OAT1-5 of H. sapiens)

This family has been described by Koepsell 2013.  It contains 13 functionally characterized human plasma membrane proteins.The family includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs and some OCTNs), (2) anion exchangers (OATs), and (3) some Na+/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in the brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, alpha-ketoglutarate, cAMP, cGMP, prostaglandins and urate. Mutations in the SLC22 genes cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs (Koepsell 2013). Models of Octs resemble GLUT3 (PDB ID# 5C65) and have an intracellular three/four-helix loop between TMH6 and TMH7 containing putative phosphorylation sites for precise regulation of hOCTs. The models allow prediction of substrate binding sites (Dakal et al. 2017).


Examples:

TC#NameOrganismal TypeExample
2.A.1.19.1

The basolateral multivalent, potential-sensitive, organic cation (tetramethyl-ammonium; N'-methylnicotinamide; cationic drugs, xenobiotics, vitamins, neuro-transmitters, etc.) transporter (uni-porter)-1, Oct1.  Cysteyl residues essential for transport and substrate binding have been identified (Sturm et al. 2007).

Animals

Oct1 of Rattus norvegicus (Q63089)

 
2.A.1.19.10

The apical proximal tubular kidney/placenta organic anion transporter 4, Oat4 (Slc22a11) (transports estrone sulfate (Km = 1 µM), dehydroepiandrosterone sulfate (Km = 60µM), many anionic drugs, diuretics, bile salts, urate and ochratoxin A). Catalyzes Na+-independent efflux, possibly using glutamate as a counter anion in an exchange reaction, especially in the placenta (Lofthouse et al. 2015).  Functions in renal urate reabsorption (Prestin et al. 2014).

Animals

SLC22A11 (Oat4) of Homo sapiens

 
2.A.1.19.11

The apical proximal tubular renal urate:anion exchanger, URAT1 (Slc22a12) (catalyzes Na+-independent anion efflux (secretion) and reabsorption) (Eraly et al., 2003a,b; Anzai and Endou, 2011; Prestin et al. 2014)  Regulated by the PDZK1 protein; Anzai et al., 2004). Also transports orotate, a precursor of pyrimidine biosynthesis (Miura et al., 2011). Mutations in URAT1 cause hereditary renal hypouricemia/gaut.  Residues involved in urea and inhibitor binding have been identified (Tan et al. 2016).

Animals

SLC22A12 of Homo sapiens

 
2.A.1.19.12

The high affinity L-carnitine transporter, CT2 (present in the luminal membranes of epididymal epithelia and Sertoli cells of the testis) (Enomoto et al., 2002b)

AnimalsSLC22A16 of Homo sapiens
 
2.A.1.19.13The organic cation transporter, Oct1 (transports L-carnitine; expressed in vascular tissues of various organs and at sites of lateral root formation) (Lelandais-Briere et al, 2007)PlantsOct1 of Arabidopsis thaliana (Q9CAT6)
 
2.A.1.19.14

Brush boarder glycosylated urate (Km= 1.2 mM) tranporter, RST. Orthologous to the human URAT1. Inhibited by 50 μM benzbromarone, 1 mM probenecid and 10 mM lactate which may also be transported and trans-stimulate urate uptake. May be orthologous to 2.A.1.19.11 as well (Hosoyamada et al., 2004).  Involved in urate absorption across the apical membrane, but probably not the primary route (Eraly et al. 2008; Prestin et al. 2014).

Animals

URAT1 of Mus musculus
(Q8CFZ5)

 
2.A.1.19.15The liver multispecific organic anion transporter, NLT or OAT2. Transports salicylate, KM=90µM, acetylsalicylate, prostaglandin E2, dicarboxylate, p-aminohippurate, etc. (Sekine et al., 1998)AnimalsNLT of Rattus norvegicus (Q63314)
 
2.A.1.19.16

The organic anion transporter, Oat6 (binding and transport rates for 40 anionic substrates were studied and compared with these for Oat1 (TC# 1.A.1.19.4) (Kaler et al., 2007); transports many antiviral agents (Truong et al., 2008).

Animals

Oat6 of Mus musculus (Q80UJ1)

 
2.A.1.19.17

Kidney organic cation transporter-like 3 ORCTL-3 (OAT10; SLC22A13; Like-3) (Bahn et al., 2008) (transports nicotinate, p-aminohippurate and urate; KM=20-40 mμM) via exchange for lactate).  Activated by tumorigeneic mutations in this antitumor gene to promote apoptosis (AbuAli and Grimm 2014).  Functions in urate reabsorption (Prestin et al. 2014).

Animals

SLC22A13 of Homo sapiens

 
2.A.1.19.18Oranic anion transporter, Oat7 (exchanges sulfate conjugates (steroids) and other anions for butyrate) (Shin et al., 2007)AnimalsSLC22A9 of Homo sapiens
 
2.A.1.19.19

The rat kidney basolateral potential-driven symport carrier, Oct2 (transports tetraethylammonium and many other organic cations) (Sweet and Pritchard 1999).  A cysteiyl residue critical for substrate binding and transport has been identified (Sturm et al. 2007).

animals

Oct2 of Rattus norvegicus (Q9R0W2)

 
2.A.1.19.2

The ergothionine/organic cation porter, OctN1 (SLC22A4). Associated with rheumatoid arthritis (Barton et al., 2005).  Acetylcholine is a physiological substrate, and its transport could be involved in nonneuronal cholinergic functions (Pochini et al. 2013).  OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer. Transports TEA, and acetylcholine better than acetylcarnitine (Pochini et al. 2015).

Animals

OctN1 of Homo sapiens (O14546)

 
2.A.1.19.20

Prostaglandin (PGE2, PGE2α, and PGD(2)) -specific organic anion transporter. Exhibits Na+ -independent and saturable transport. Shows narrow substrate selectivity and high affinity (Shiraya et al., 2010).

Animals

OAT-PG of Homo sapiens (Q8R0S9)

 
2.A.1.19.21 solute carrier family 22, member 24AnimalsSLC22A24 of Homo sapiens
 
2.A.1.19.22

solute carrier family 22, member 14, Slc22a14, is crucial for sperm motility and male fertility in mice. It is expressed specifically in male germ cells, and mice lacking the Slc22a14 gene show severe male infertility as well as sperm morphological changes (Maruyama et al. 2016).

Animals

SLC22A14 of Homo sapiens

 
2.A.1.19.23 solute carrier family 22, member 31AnimalsSLC22A31 of Homo sapiens
 
2.A.1.19.24Solute carrier family 22 member 3 (Extraneuronal monoamine transporter) (EMT) (Organic cation transporter 3)AnimalsSLC22A3 of Homo sapiens
 
2.A.1.19.25

Solute carrier family 22 member 7 (liver transporter) (Organic anion transporter 2) (hOAT2), transports the anti-viral drug, acyclovir (Dahlin et al. 2013).

Animals

SLC22A7 of Homo sapiens

 
2.A.1.19.26

Multispecific anion transporter, OatA1, of 526 aas and 12 TMSs.

Animals

OatA1 of Caenorhabditis elegans

 
2.A.1.19.27Solute carrier family 22 member 10 (Organic anion transporter 5)AnimalsSLC22A10 of Homo sapiens
 
2.A.1.19.28

Solute carrier family 22 member 23.  The rat orthologue may be inactive (Bennett et al. 2011).

Animals

SLC22A23 of Homo sapiens

 
2.A.1.19.29

Solute carrier family 22 member 1 (Organic cation transporter 1) (hOCT1).  May be a primary polyamine uptake porter (Abdulhussein and Wallace 2013).

Animals

SLC22A1 of Homo sapiens

 
2.A.1.19.3

The polyspecific organic cation (L- and D-carnitine, butyryl-L-carnitine, acetyl carnitine, γ-butyro-betaine, glycinebetaine, β-lactam antibiotics with a quaternary nitrogen such as cephaloridine, and others):Na+ symporter, OctN2 (SLC22A5). Carnitine is transporter with high affinity (2 - 20 μM0 (Ingoglia et al. 2015). Associated with Crohn''s disease (Barton et al., 2005) as well as primary carnitine deficiency.  The protein is glycosylated on extracytoplasmic asparagines, and these residues are in a region important for function and turnover (Filippo et al. 2011).  OCTN2 maintains the carnitine homeostasis, resulting from intestinal absorption, distribution to tissues, and renal excretion/reabsorption (Pochini et al. 2013).  OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer.  OctN2 is activated in a process dependent on Caveolin1 (Q03135)which interacts directly with OctN2 and by protein kinase C which does not phosphorylate OctN2 directly (Czeredys et al. 2013).

Animals

SLC22A5 of Homo sapiens

 
2.A.1.19.30

Solute carrier family 22 member 2 (Organic cation transporter 2) (hOCT2).  Oct2 is a low affinity high efficiency choline transporter, enriched in synaptic vesicles of cholinergic neurons (Nakata et al. 2013).  May also transport peptides and peptide derivatives (Volková et al. 2015).

Animals

SLC22A2 or Oct2 of Homo sapiens

 
2.A.1.19.31

Solute carrier family 22 member 6 (Organic anion transporter 1) (hOAT1) (PAH transporter) (hPAHT) (Renal organic anion transporter 1) (hROAT1),  Probably orthologous to 2.A.1.19.4. Functions in urate uptake from the circulation across the basolateral membrane of tubular cells (Prestin et al. 2014).

Animals

SLC22A6 of Homo sapiens

 
2.A.1.19.32Solute carrier family 22 member 15 (Fly-like putative transporter 1) (Flipt 1)AnimalsSLC22A15 of Homo sapiens
 
2.A.1.19.33

Solute carrier family 22 member 25 (Organic anion transporter UST6).  Expressed exclusively in liver in both embryo and adult (Eraly et al. 2004).

Animals

SLC22A25 of Homo sapiens

 
2.A.1.19.34

Multispecific drug transporter, solute carrier family 22 member 8 (Organic anion transporter 3) (hOAT3).  Both OAT1 and OAT3 of humans are inhibited by caffeic acid (Ki ~ 17 μM) (Uwai et al. 2011; Wu et al. 2013).  It is the principal uptake system for steviol glucuronide (SVG), the major metabolite derived from steviol, the aglycone of stevioside and rebaudioside A (Wang et al. 2015).  Also functions in urate uptake from the circulation across the basolateral membrane of renal tubular cells (Prestin et al. 2014).

See also 2.A.1.19.9.

Animals

SLC22A8 of Homo sapiens

 
2.A.1.19.35Solute carrier family 22 member 20 (Organic anion transporter 6)AnimalsSLC22A20 of Homo sapiens
 
2.A.1.19.36

Organic cation transporter protein. OrcT

Animals

OrcT of Drosophila melanogaster

 
2.A.1.19.37Organic cation transporter 1 (CeOCT1)Worm

Oct-1 of Caenorhabditis elegans

 
2.A.1.19.38Uncharacterized MFS-type transporter PB1E7.08cYeastSPAPB1E7.08c of Schizosaccharomyces pombe
 
2.A.1.19.39Organic cation/carnitine transporter 6 (AtOCT6)PlantsOCT6 of Arabidopsis thaliana
 
2.A.1.19.4

The polyspecific organic anion, cation and neutral molecule transporter, Oat1 (Slc22a6) (transports neutral compounds such as cardiac glycosides [i.e., ouabain] and steroids [i.e., aldosterone; cortisol; dexamethasone]; cationic compounds such as N-propylajmalinium, and anionic compounds such as p-aminohippurate, dicarboxylates, cyclic nucleotides, prostaglandins, urate, β-lactam antibiotics, nonsteroidal anti-inflammatory drugs, diuretics, bile salts and steroid conjugates [i.e., estrone-3-sulfate and estradiol-17-glucuronide]) transporter (H+ symporter or uniporter) Probably catalyzes organic anion (uptake):dicarboxylate (efflux) antiport in the basolateral membrane of kidney proximal tubules) (Eraly et al., 2003a,b). A 3-dimensional model of OAT1 has led to the identification of residues involved in differential transport of substrates such as p-aminohippurate and cidofovir (Perry et al., 2006). Oat1 transports many antiviral agents (Truong et al., 2008).  The human orthologue (Q4U2R8; 563aas) has been shown to be a multispecific organic anion transporter on the basolateral membrane of the proximal tubule in human kidney (Hosoyamada et al. 1999). A substrate binding hinge domain is required for transport-related structural changes (Egenberger et al., 2012). Transports environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories (Duan et al., 2011). hOAT1 has two GXXXG motifs in TMSs 2 and 5 which play critical roles in stability (Duan et al., 2011).  Both OAT1 and OAT3 of humans are inhibited by caffeic acid (Ki ~ 17 μM) (Uwai et al. 2011).

Animals

Oat1 of Rattus norvegicus (O35956)

 
2.A.1.19.40

Organic anion transporter, Oat9.  A splice variant with 443 aas and 8 TMSs (Oa9S) was reported to transport L-carnitine (3 μM), cimetidine (16 μM) and salicylic acid (175 μM), but the full length protein of 551 aas and 12 TMSs (Oat9L) was reported to be inactive (Tsuchida et al. 2010).  

Animals

Oat9 of Mus musculus

 
2.A.1.19.41

Organocation transporter, OCTN3.  Identified only in mouse; mediates carnitine transport (Pochini et al. 2013).  81% identical to 2.A.1.19.3.  Also called SLC22a21 and SLC22a9.

Animals

OctN3 of Mus musculus

 
2.A.1.19.42

Slc22 homologue of 580 aas.

Plants (single celled marine green alga)

Slc19 homologue of Ostreococcus tauri

 
2.A.1.19.43

Organocation transporter, Oct4 of 526 aas

Plants

Oct4 of Arabidopsis thaliana (Mouse-ear cress)

 
2.A.1.19.44

Uncharacterized protein of 556 aas

Plants (Algae)

UP of Chlorella variabilis (Green alga)

 
2.A.1.19.45

MFS transporter of 569 aas

Ciliates

MFS transporter of Tetrahymena thermophila

 
2.A.1.19.46

MFS transporter of 593 aas

Alveolata (ciliates)

MFS porter of Oxytricha trifallax

 
2.A.1.19.47

MFS porter of 691 aas

Algae

MFS porter of Volvox carteri (Green alga)

 
2.A.1.19.48

Fungal MFS homologue of 520 aas

Fungi

UP of Aspergillus terreus

 
2.A.1.19.49

Putative glucose transporter 1 (Gluct1) of 569 aas and 12 TMSs.  Constitutively synthesized in many tissues.  Serves as the receptor of white spot syndrom virus (WSSV) (Huang et al. 2012). 

Animals

Gluct1 of Litopenaeus vannamei (Whiteleg shrimp) (Penaeus vannamei)

 
2.A.1.19.5

The putative apical polyspecific organic cation transporter (cation:H+ or cation:cation antiporter), Oct2 (substrates include monoamine neurotransmitters such as dopamine, noradrenaline, adrenaline and 5-hydroxytryptamine) (Oct2 exhibits some properties of an ion channel with an inner diameter of ~4 Å. Selectivity: Cs+ > Rb+ > K+ > Na+ %u2248 Li+ (Schmitt and Koepsell, 2005)) Chloride dependent, but a single mutation (R466K) abolishes this dependency (Rizwan et al., 2007). Also transports ochratoxin (Rizwan et al., 2007) and cisplatin and oxaliplatin (Yonezama et al., 2006).

AnimalsOct2 of Sus scrofa (O02713)
 
2.A.1.19.6

The polyspecific potential-sensitive organic cation uptake transporter, Oct3 (transport substrates include the neurotoxin 1-methyl-4-phenylpyridinium and monoamine neurotransmitters such as dopamine). Mediates paraquat (herbicide) neurotoxicity (Rappold et al., 2011).

Animals

Oct3 of Rattus norvegicus (O88446)

 
2.A.1.19.7The polyspecific organic anion (and cation) (anions: p-aminohippurate, ochratoxin A, estrone sulfate, anionic drugs, anionic neurotransmitter metabolites; cation: cimetidine) transporter, Oat3 (slc22a8) (catalyzes organic anion (uptake): dicarboxylate (efflux) antiport in the basolateral membrane of the renal proximal tubule) (Eraly et al., 2003a,b); transports many antiviral agents (Truong et al., 2008).AnimalsOat3 of Rattus norvegicus (Q9R1U7)
 
2.A.1.19.8

The human organic cation transporter, SLC22A17.  The rat orthologue may be inactive (Bennett et al. 2011).

It is also the cell surface receptor for Lipocalin-2 (LCN2; 24p3) that plays a key role in iron homeostasis and transport. Able to bind iron-bound LCN2, followed by internalization and release of iron, thereby increasing intracellular iron concentration and leading to inhibition of apoptosis. Also binds iron-free LCN2, followed by internalization and its association with an intracellular siderophore, leading to iron chelation and iron transfer to the extracellular medium, thereby reducing intracellular iron concentration and resulting in apoptosis.

Animals

SLC22A17 of Homo sapiens

 
2.A.1.19.9

The osteosclerosis protein, Roct (organic anion transporter 3, Oat3) (Slc22a8) (catalyzes organic anion (uptake):di-carboxylate (efflux) antiport in the basolateral membrane of the renal proximal tubule) (Eraly et al., 2003a,b); transports glutathione and many antiviral agents (Truong et al., 2008).  It is a multispecific drug transporter, critical for the renal handling of common drugs (e.g, antibiotics, antivirals, diuretics) and toxins.  Probably handles hydroxylated and glucouronidated metabolites, consistent with the "remote sensing and signaling hypothesis" (Wu et al. 2013).  It may also handle dietary flavonoids and antioxidants.

Animals

Roct (Oat3) of Mus musculus (O88909)

 


2.A.1.2 The Drug:H+ Antiporter-1 (12 Spanner) (DHA1) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.2.1

Pyridoxine, pyridoxal, pyridoxamine, amiloride:H+ cotransporter (Km (pyridoxine) = 22 μM) (Stolz et al., 2005). Also takes up thiamine (Vogl et al., 2008).

Yeast

Bsu1 (Car1) of Schizosaccharomyces pombe (P33532)

 
2.A.1.2.10

Quinolone (and other drug):H+ antiporter, NorA.  Many synthetic inhibitors have been identified (Bhaskar et al. 2016).

Bacteria

NorA of Staphylococcus aureus (P0A0J7)

 
2.A.1.2.100

Bcr/CflA family drug resistance efflux transporter of 389 aas and 12 TMSs.

MDR exporter of Staphylococcus aureus

 
2.A.1.2.101

Bmr-like protein SblA of 395 aas and 12 TMSs.

SblA of Staphylococcus aureus

 
2.A.1.2.102

TetA class C (TetA(C)) of 396 aas and 12 TMSs. The TetA(C) of the transposon, Tn10, not only exports tetracycline by a proton antiport mechanism, it also increases susceptibility to cadmium, fusaric acid, bleomycin and  several classes of cationic aminoglycoside antibiotics (Griffith et al. 1995).  For this reason, it has been used to generate dual counter selection procedures (Li et al. 2013). It is not certain that this is due to import of these compounds as this increased susceptibility could be due to a secondary effect.

TetA(C) of E. coli

 
2.A.1.2.103

Tetracycline:H+ class D, (TetA(D)) antiporter of 286 aas and 12 TMSs.

TetA(D) of E. coli

 
2.A.1.2.11Monoamine transporter; drug (doxorubicin, ethidium bromide-6-G):H+ antiporterAnimalsVMAT1 of Rattus norvegicus
 
2.A.1.2.12Chromaffin granule monoamine (and drug) transporter, VAT1AnimalsSLC18A1 of Homo sapiens
 
2.A.1.2.13

Vesicular acetylcholine:H+ antiporter, UNC-17/VAChT.  Mutants grow slowly and are uncoordinated, but the defect can be corrected by mutation of an interacting monotopic protein, SUP-1 (Mathews et al. 2012). 

Animals

Unc17 of Caenorhabditis elegans

 
2.A.1.2.14

Putative arabinose efflux porter, AraJ.

Bacteria

AraJ of E. coli

 
2.A.1.2.15

Arabinose (but not xylose) and isopropyl β-D-thio-galactopyranoside:H+ antiporter, YdeA (Koita and Rao 2012).

Bacteria

YdeA of E. coli

 
2.A.1.2.16

Polyamines (spermine, spermidine, putrescine); paraquat; methylglyoxal bis(guanylhydrazone):H+ antiporter (in the plasma membrane) (activated by phosphorylation) (Uemura et al., 2005)

Yeast

TPO1 (YLL028w) of Saccharomyces cerevisiae

 
2.A.1.2.17Fluconazole:H+ antiporterYeastFlr1 of Saccharomyces cerevisiae
 
2.A.1.2.18Lactose and melibiose (>>IPTG) efflux pump, SotBBacteriaSotB of Erwinia chrysanthemi
 
2.A.1.2.19

The multidrug (chloramphenicol, tetra-
cycline, norfloxacin, doxorubicin, trimethoprim, acriflavin, ethidium bromide, tetraphenylphosphonium, TPP, benzalkonium, ciprofloxacin, thiamphenicol, IPTG) resistance exporter, MdfA (catalyzes both electrogenic and electroneutral transport) (Adler and Bibi, 2004). Can function as a Na (K )/H antiporter (Lewinson and Bibi 2001; Higgins, 2007). For review of MdfA see Lewinson et al., 2006. The conformational switch accompanying transport is induced by promiscuous binding of substrates and/or inhibitors to the binding pocket (Fluman et al., 2009). Normally extrudes monovalent cationic drugs in exchange for a single proton, but it transports divalent cationic drugs poorly. It can be mutated to antiport a divalent cationic drug for 2 protons (Tirosh et al., 2012).

Bacteria

MdfA of E. coli (P0AEY8)

 
2.A.1.2.2Cycloheximide:H+ antiporterYeastCyhR of Candida maltosa
 
2.A.1.2.20

Broad specificity MDR efflux pump, MdtG (YceE) (under SoxSR control) (Fàbrega et al., 2010).  Confer resistance to fosfomycin, fluoroquinolone and many other drugs (Nishino and Yamaguchi 2001).

Bacteria

MdtG of E. coli

 
2.A.1.2.21

The norfloxacin/enoxacin resistance protein, MdtH or YceL (Nishino and Yamaguchi 2001).

Bacteria

MdtH or YceL of E. coli (P69367)

 
2.A.1.2.22

The multidrug resistance protein, YidY (Nishino and Yamaguchi 2001).

Bacteria

YidY of E. coli

 
2.A.1.2.23The fructose-specific facilitator (uniporter), Ffz1 (Pina et al., 2004)YeastFfz1 of Zygosaccharomyces bailii (CAD56485)
 
2.A.1.2.24The multidrug resistance efflux pump, CgMDR (exports fluoroquinolones and chloramphenicol) (Vardy et al., 2005)BacteriaCgMDR of Corynebacterium glutamicum (NP_600365)
 
2.A.1.2.25

The purine base/nucleoside (nucleosides: inosine, adenosine and guanosine; bases: hypoxanthine, adenine, guanine, 2-fluoroadenine) efflux pump, YdhL (PbuE) (Johansen et al., 2003; Nygaard and Saxild, 2005; Zakataeva et al., 2007; Sheremet et al. 2011).

Bacteria

PbuE of Bacillus subtilis (O05504)

 
2.A.1.2.26

The purine ribonucleoside (inosine, adenosine, guanosine, 6-mercaptopurine ribonucleoside) efflux pump (H+ antiporter), NepI (YicM) (Gronskiy et al., 2005; Sheremet et al. 2011)

Bacteria

NepI of E. coli (P0ADL1)

 
2.A.1.2.27The alcaligin siderophore exporter, AlcS (Brickman and Armstrong, 2005)BacteriaAlcS of Bordetella pertussis (CAE42734)
 
2.A.1.2.28

The vesicular acetylcholine transporter, VAChT (pumps acetylcholine into synaptic vesicles).  The acetyl choline and vesamicol binding sites are near the luminal end of the transport pathway (Khare et al. 2010).

Animals

SLC18A3 of Homo sapiens

 
2.A.1.2.29

The vesicular monoamine transporter, VMAT2 (pumps dopamine, norepinephrine, serotonin and histamine into synaptic vesicles) (Cliburn et al. 2016). VMAT2 physically and functionally interacts with the enzymes responsible for dopamine synthesis (Cartier et al., 2010).  Molecular hinge points mediating alternating access have been identified (Yaffe et al. 2013).

Animals

VMAT2 (SLC18A2) of Homo sapiens

 
2.A.1.2.3

Chloramphenicol:H+ antiporter, CmlA; Cmr; MdfA.  Multidrug exporter that also catalyzes efflux of arabinose (but not xylose) and  isopropyl β-thiogalactoside (Koita and Rao 2012).

Bacteria

CmlA of Pseudomonas aeruginosa

 
2.A.1.2.30

The hippocampus abundant transcript-like 1 protein, HIATL1 (putative drug exporter)

Animals

HIATL1 of Homo sapiens (NP_115947)

 
2.A.1.2.31The multidrug transporter, QDR2, required for resistance to quinidine, barban, cisplatin, and bleomycin; may have a role in potassium uptakeBacteriaQDR2 of Saccharomyces cerevisiae (P40474)
 
2.A.1.2.32The chloramphenicol resistance protein, ChlRBacteriaChlR of Streptomyces lividans (P31141)
 
2.A.1.2.33The Hol1 MFS transporter (Mutation allows the uptake of histidinol and other cations (Wright et al., 1996). The N-terminal 200 residues show 22% identity with 2.A.1.2.1 and 2.A.1.2.16).YeastHol1 of Saccharomyces cerevisiae (P53389)
 
2.A.1.2.34

The MDR efflux pump, PmrA (exports fluoroquinolone and other compounds) and other components including the antimicrobial peptide, colistin (Martinez-Garriga et al. 2007; Pamp et al., 2008).

Bacteria

PmrA of Streptococcus pneumoniae (P0A4K4)

 
2.A.1.2.35

The caffeine resistance protein 5 (Caf5) (Benko et al., 2004)

Bacteria

Caf5 of Schizosaccharomyces pombe (O94528)

 
2.A.1.2.36The multidrug resistance protein Aqr1 (YNL065w) (exports short chain monocarboxylates but not more hydrophobic acids such as octonate and quinidine. Also exports ketoconazole and crystal violet (Tenreiro et al., 2002)).YeastAqr1 of Saccharomyces cerevisiae (P53943)
 
2.A.1.2.37The legiobactin (siderophore) exporter (most similar to 2.A.1.2.9; 23% identity) (Allard et al., 2006)Gram-negative bacteriumIbtB of Legionella pneumophila
LbtA (Q45RG2)
LbtB (Q5WX21)
 
2.A.1.2.38Tetracycline-specific exporter, TetA39 (most like 2.A.1.2.4) (Thompson et al., 2007).BacteriaTetA39 of Acinetobacter spp. (Q56RY7)
 
2.A.1.2.39Tetracycline-specific exporter, TetA41 (most like 2.A.1.2.4) (Thompson et al., 2007).BacteriaTetA41 of Serratia marcescens (Q5JAK9)
 
2.A.1.2.4Tetracycline:H+ antiporterBacteriaTetA of E. coli
 
2.A.1.2.40The dityrosine exporter, Dtr1 (required for formation of the outer layer of the cell wall (Morishita and Engebrecht, 2008)).

Yeast

Dtr1 of Saccharomyces cerevisiae (P38125)

 
2.A.1.2.41The tetracycline resistance determinant, TetA42 from a deep terrestrial subsurface bacterium (Brown et al., 2008).

Bacteria

TetA42 of Micrococcus sp. SMCC G8878 (B2YGG2)

 
2.A.1.2.42

The multidrug efflux pump, EmrD-3 (exports ethidium, linezolid, tetraphenylphosphonium chloride, rifampin, erythromycin, minocycline, trimethoprim, chloramphenicol, and rhodamine) (Smith et al., 2009).

Bacteria

EmrD-3 of Vibrio cholerae (Q9KMQ3)

 
2.A.1.2.43

The multidrug efflux pump, Qdr3 (exports polyamines, quinidine, barban, cisplatin and bleomycin). The two halves of the protein each have an N-terminal. 150 residue hydrophilic region found in many fungi followed by a 200 residue, 6 TMS, transmembrane region. This suggests that an intragenic duplication event gave rise to 12 TMS proteins independently of most other MFS carriers, but this has not been demonstrated, possibly because of extensive sequence divergence of the second half.

Fungi

Qdr3 of Saccharomyces cerevisiae (P38227)

 
2.A.1.2.44

Diglucosyl-diacylglycerol exporter or flippase, LtaA (lipoteichoic acid protein A) (Gründling and Schneewind, 2007).

Firmicutes

LtaA of Staphylococcus aureus (Q2FZP8)

 
2.A.1.2.45

The fructose-specific uniporter, Ffz1 (69% identical to Ffz2 
(2.A.1.2.46) and 66% identical to (2.A.1.2.23) (Leandro et al., 2011). 

Yeast

Ffz1 of Zygosaccharomyces rouxii (C5E4Z7)

 
2.A.1.2.46

The fructose/glucose uniporter, Ffz2 (64% identical to 2.A.1.2.23). Both sugars are transported with similar affinities and efficiencies (Leandro et al., 2011). 

Yeast

Ffz2 of Zygosaccharomyces rouxii (C5DX43)

 
2.A.1.2.47

The multidrug resistance efflux pump, HsMDR (YfmO2).  Exports drugs such as fluoroquinolones and chloramphenicol (Vardy et al., 2005).

Archaea

HsMDR of Halobacterium salinarum

 
2.A.1.2.48

tetracycline exporter

Eukaryotes

tetR exporter of Aspergillus niger (A2QTF4)

 
2.A.1.2.49

Putative tetracycline resistance protein

Archaea

Putative tet resistance pump of Pyrobaculum aerophilum (Q8ZUX8)

 
2.A.1.2.5

Multidrug (14- and 15-membered macrolides, lincosamides, streptogramins, tetracyclines, daunomycin, ethidium bromide, etc.):H+ antiporter, LmrP. Two proton translocation pathways have been proposed (Bapna et al., 2007), but Schaedler and van Veen, 2010 have provided evidence that a flexible cation binding site in LmrP is associated with variable proton coupling. Basic residues R260 and K357 affect the conformational dynamics of LmrP (Wang and van Veen, 2012).  Basic residues, R260 and K357 control the conformational dynamics of the protein (Wang and van Veen 2012).  Also specifically catalyzes Ca2+:3H+ antiport with an affinity of 7 μM (Zhang et al. 2012). Two carboxylates (Asp-235 and Glu-327) are critical for Ca2+ binding.  Protonation drives major conformational switches (Masureel et al. 2013). The system exhibits plasticity in proton interactions, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport (Nair et al. 2016).

 

Gram-positive bacteria

LmrP of Lactococcus lactis

 
2.A.1.2.50

MFS porter

Slime molds

MFS porter of Dictyostelium purpureum (F0ZU09)

 
2.A.1.2.51

Chloramphenicol (specific) resistance pump, CraA (43% identical to MdfA of E. coli) (Roca et al., 2009).

Bacteria

CraA of Acinetobacter baumannii (A3M9E9)

 
2.A.1.2.52

Puromycin resistance MDR protein, MdtM (Soo et al., 2011).  Also catalyzes bile salt:H+ antiport, and binds cholate and deoxycholate to the protein with micromolar affinity. Functions as an MDR pump (Nishino and Yamaguchi 2001). Acts synergistically with AcrAB-TolC (Paul et al. 2014).

Bacteria

MdtM of E. coli (P39386)

 
2.A.1.2.53

MDR pump, SLC22A18 in lung cancer cells (Lei et al., 2012).

AnimalsSLC22A18 of Homo sapiens
 
2.A.1.2.54

LigA-like protein

Bacteria

LigA-like protein of Streptomyces coelicolor (Q9KYE9)

 
2.A.1.2.55

Peptide exporter (Ala-Gln and Ala-branched chain amino and dipeptides) (Hayashi et al., 2010).  May also export arabinose (but not xylose) and function as an MDR pump (Koita and Rao 2012).

Bacteria

YdeE of E. coli (P31126)

 
2.A.1.2.56

NCL7 or MFSD8. Neuronal ceroid lipofuscinosis, NCL, a neuro-degenerative genetic disease, is caused by mutations in at least 8 different human genes, one of which, CLN7 (MFSD8), is associated with late infantile NCL. CLN7 is localized to lysosomes (Sharifi et al., 2010).  Loss of this putative lysosomal transporter in the brain leads to lysosomal dysfunction, impaired constitutive autophagy and neurodegeneration late in the disease (Brandenstein et al. 2015).

Animals

NCL7 of Homo sapiens (Q8NHS3)

 
2.A.1.2.57MFS-type transporter SLC18B1 (Solute carrier family 18 member B1)AnimalsC6orf192 of Homo sapiens
 
2.A.1.2.58Protein ZINC INDUCED FACILITATOR 1PlantsZIF1 of Arabidopsis thaliana
 
2.A.1.2.59

Ucharacterized MFS-type transporter C330.07c; YJ87

Yeast

YJ87 of Schizosaccharomyces pombe

 
2.A.1.2.6

(Benomyl, cycloheximide, methotrexate, fluconazole, etc.):H+ antiporter, CaMDR1 (Basso et al., 2010; Cannon et al., 1998). MDR1 catalyzes efflux of commonly used azoles. The central cytoplasmic loop is critical for MDR function, but does not impart substrate specificity (Mandal et al., 2012).

Yeast

CaMDR1 of Candida albicans

 
2.A.1.2.60

YajR of 454 aas and 12 TMSs.  The 3-D structure in the outward-facing conformation is available at 3.15Å resolution, and the cytoplasmic C-terminal YAM domain has been solved to 1.07Å resolution.  This 65 aa YAM domain is thought to control the conformational states of the protein (Jiang et al. 2013; Jiang et al. 2014).

Proteobacteria

YajR of E. coli

 
2.A.1.2.61

SPX domain-containing membrane protein At1g63010

Plants

At1g63010 of Arabidopsis thaliana

 
2.A.1.2.62

Putative MDR pump, YdhC.  Probably exports arabinose but not xylose (Koita and Rao 2012).

Bacteria

YdhC of Escherichia coli

 
2.A.1.2.63Probable drug/proton antiporter YHK8FungiYHK8 of Saccharomyces cerevisiae
 
2.A.1.2.64

Polyamine exporter 4 (Igarashi and Kashiwagi 2010).

Fungi

TPO4 of Saccharomyces cerevisiae

 
2.A.1.2.65

Inner membrane transport protein YdhP

Bacteria

YdhP of Escherichia coli

 
2.A.1.2.66

Polyamine exporter 3 (Igarashi and Kashiwagi 2010).

Fungi

TPO3 of Saccharomyces cerevisiae

 
2.A.1.2.67

Polyamine exporter 2 (Igarashi and Kashiwagi 2010).

Fungi

TPO2 of Saccharomyces cerevisiae

 
2.A.1.2.68

Tetracycline resistance protein, class B (TetA(B)) (Metal-tetracycline/H+ antiporter).  Mutants defective in either transport or tetracycline binding have been isolated (Wright and Tate 2015).

Proteobacteria

TetA of Escherichia coli

 
2.A.1.2.69

Uncharacterized MFS-type transporter YttB

Bacilli

YttB of Bacillus subtilis

 
2.A.1.2.7

Bicyclomycin, sulfathiazole, tetracycline, fosfomycin, acriflavin, etc.):H+ antiporter (Nishino and Yamaguchi 2001).  Also exports L-cysteine (Yamada et al., 2006).

Gram-negative bacteria

Bcr of E. coli

 
2.A.1.2.70Multidrug resistance protein 1 (Multidrug-efflux transporter 1)Bacilli

Bmr of Bacillus subtilis

 
2.A.1.2.71Uncharacterized MFS-type transporter Rv2456c/MT2531BacteriaRv2456c of Mycobacterium tuberculosis
 
2.A.1.2.72Major facilitator superfamily domain-containing protein 9AnimalsMfsd9 of Mus musculus
 
2.A.1.2.73Major facilitator superfamily domain-containing protein 10 (Tetracycline transporter-like protein)AnimalsMfsd10 of Mus musculus
 
2.A.1.2.74Multidrug resistance protein MdtL

Proteobacteria

MdtL of Shewanella sp.

 
2.A.1.2.75Tetracycline resistance protein, class E (TetA(E))

Bacteria

TetA of Escherichia coli

 
2.A.1.2.76

Major facilitator copper transporter 1, Mfc1.  Takes up copper in meiotic sporulating cells; present in the forespore membrane.  Induced under copper limitation.  Required for normal forespore development and spore copper-dependent amine oxidase activity (Beaudoin et al. 2011).

Yeast

Mfc1 of Schizosaccharomyces pombe

 
2.A.1.2.77

CefT confers phenylacetate resistance (Fernández-Aguado et al. 2012).  It has been reported to be a hydrophilic beta-lactam transporter that is involved in the secretion of hydrophilic beta-lactams containing an α-aminoadipic acid side chain (isopenicillin N, penicillin N and deacetylcephalosporin C) (Cesareo et al. 2007; Ullán et al. 2002).

Fungi

CefT of Acremonium chrysogenum

 
2.A.1.2.78

The PaaT (PenT) exporter.  PaaT is involved in penicillin production, possibly through the translocation of side-chain precursors (phenylacetate and phenoxyacetate) from the cytosol to the peroxisomal lumen across the peroxisomal membrane of P. chrysogenum.  It has a Pex19 (peroxisome biogenesis factor 19) binding sequence (residues 258 - 269) accounting for its peroxysomal location (Fernández-Aguado et al. 2012; Yang et al. 2012).

Fungi

PaaT of Penicillum chysogenum (notatum)

 
2.A.1.2.79

The host-nonselective polyketide perylenequinone toxin, cercosporin, exporter, Ctb4 (Choquer et al. 2007).

Fungi

Ctb4 of Cercospora nicotianae

 
2.A.1.2.8(Spermidine; fluoroquinolones, acriflavin, chloramphenicol, ethidium bromide, etc.):H+ antiporterGram-positive bacteriaBlt of Bacillus subtilis
 
2.A.1.2.80

Putative permease of 458 aas

Rhodophyta

Putative permease of Galdieria sulphuraria

 
2.A.1.2.81

Uncharacterized MFS permease; encoded by a gene adjacent to one encoding a peroxiredoxin (an electron donor and antioxidant; Hanschmann et al. 2013).

Deinococcus/Thermus

UP of Deinococcus peraridilitoris

 
2.A.1.2.82

Uncharacterized MFS permease of 402 aas and 12 TMSs

Spirochaetes

UP of Leptospira interrogans

 
2.A.1.2.83

MmrA MFS protein. Homologous to drug exporter. RppA and MmrA are involved in amino acid uptake and efflux of antimicrobial agents including streptomycin, ethidium bromide and norfloxacin (Kimura et al. 2004).

Proteobacteria

MXAN_5906 of Myxococcus xanthus.  

 
2.A.1.2.84

Probable siderophore-specific exporter of 407 aas and 12 TMSs, MxcK.

Proteobacteria

MxcK of Stigmatella aurantiaca

 
2.A.1.2.85

Peroxysomal phenylacetate/phenoxyacetate transporter, PaaT (CefT) of 564 aas (Fernández-Aguado et al. 2013).

Fungi

PaaT of Penicillium chrysogenum (Penicillium notatum)

 
2.A.1.2.86

Peroxisomal isopenicillin N importer, PenM (Evers et al. 2004; Fernández-Aguado et al. 2014).

Fungi

PenM of Penicillium chrysogenum (Penicillium notatum)

 
2.A.1.2.87

Purine efflux porter of 392 aas, CepA.  Exports purine analogues, 6-mercaptopurine and 6-mercaptoguanine, but not to 2-aminopurine and purine nucleoside analogues. May show increased resistance to the antibiotics nalidixic acid and ampicillin (Sim et al. 2014).

Actinobacteria

CepA of Corynebacterium glutamicum

 
2.A.1.2.88

MFS porter of 442 aas

Euryarchaea

MFS porter of Pyrococcus furiosus

 
2.A.1.2.89

MFS porter of 454 aas

Actinobacteria

MFS porter of Streptomyces coelicolor

 
2.A.1.2.9

(Hydrophobic uncoupler e.g., CCCP, benzalkonium, SDS and other drugs):H+ antiporter, EmrD (Nishino and Yamaguchi 2001). The 3-d structure (3.5 Å resolution) has been determined (Yin et al., 2006).  conformational dynamics studies have revealed details of the transport pathway and some motions of EmrD at an atomic level (Baker et al. 2012).  Probably exports arabinose but not xylose (Koita and Rao 2012).

Gram-negative bacteria

EmrD of E. coli

 
2.A.1.2.90

UMF4F of 405 aas and 12 TMSs

Firmicutes

UMF4F of Aectobacterium woodii

 
2.A.1.2.91

MFS permease of 554 aas and 12 TMSs

Fungi

Putative MFS carrier of Metarhizium robertsii (Metarhizium anisopliae)

 
2.A.1.2.92

The CefM protein of 482 aas and 12 TMSs. Probably involved in the translocation of penicillin N from the lumen of peroxisomes (or peroxisome-like microbodies) to the cytosol, where it is converted into cephalosporin C (Teijeira et al. 2009).  A null mutant accumulates  penicillin N, is unable to synthesize deacetoxy- and deacetyl-cephalosporin C as well as cephalosporin C, and shows impaired differentiation into arthrospores (Teijeira et al. 2009).

CefM of Acremonium chrysogenum (Cephalosporium acremonium)

 
2.A.1.2.93

Uncharacterized MFS permease of 433 aas and 12 TMSs

UP of Lactobacillus buchneri

 
2.A.1.2.94

Uncharacterized MFS permease of 445 aas and 12 TMSs

UP of Microbacterium maritypicum

 
2.A.1.2.95

Blt of 422 aas and 12 TMSs.  Exports antibiotics such as fluoroquinolones and chloramphenicol (Vardy et al. 2005)

Blt of Mycobacterium smegmatis

 
2.A.1.2.96

ZIF2 (Zinc-Induced Facilitator 2) of 484 aas and 12 TMSs localises primarily at the tonoplast of root cortical cells and is a functional transporter able to mediate Zn efflux from the cytoplasm (Remy et al. 2014).  Activity is controlled by alternative RNA splicing. 

ZIF2 of Arabidopsis thaliana

 
2.A.1.2.97

Bcr/CflA family drug exporter, MSMEG_2991 of 428 aas and 12 TMSs. A pmf-dependent multidrug efflux pump that expels diverse groups of antibiotics including ciprofloxacin. May also be involved in biofilm enhancement (Bansal et al. 2016).

Bcr-like exporter of Mycobacterium smegmatis

 
2.A.1.2.98

Uncharacterized MFS transporter of 427 aas and 12 TMSs.

UP of Aeropyrum camini

 
2.A.1.2.99

Putative siderophore exporter, SbnD of 418 aas and 12 TMSs (Marklevitz and Harris 2016).

SbnD of Staphylococcus aureus

 


2.A.1.20 The Sugar Efflux Transporter (SET) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.20.1

Sugar efflux transporter A, SetA.  Exports lactose, glucose, aromatic glucosides and galactosides, cellobiose, maltose, α-methylglucoside and isopropyl β-thiogalactosides (IPTG); amino-glycosides, streptomycin and kanamycin are weakly expelled (Liu et al. 1999).  Regulated by SgrR (a transcriptional regulator of sgrS) and SgrS (a small RNA that represses trascription of setA).  These two regulatory genes are upstream of the setA gene.  Uses a pmf-dependent mechanism of energization.  Induced in response to glucose-phosphate stress which occurs when a sugar phosphates accumulate in the cytoplam (Sun and Vanderpool 2011).

Bacteria

SetA (YabM) of E. coli

 
2.A.1.20.2

Efflux system, SetB, for lactose and glucose, but not IPTG or galactose (Liu et al. 1999).

Bacteria

SetB (YeiO) of E. coli

 
2.A.1.20.3

Arabinose (but not xylose) exporter, SetC (Koita and Rao 2012).

Bacteria

SetC (YicK) of E. coli

 
2.A.1.20.4Efflux system for arabinose and IPTG (>>lactose), SotA BacteriaSotA of Erwinia chrysanthemi
 


2.A.1.21 The Drug:H+ Antiporter-3 (12 Spanner) (DHA3) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.21.1The macrolide (erythromycin; oleando-mycin; azithromycin) efflux, MefA BacteriaMefA of Streptococcus pyogenes
 
2.A.1.21.10

MFS porter

Archaea

MFS porter of Sulfolobus islandicus (D2PCQ8)

 
2.A.1.21.11

MFS porter

Bacteria

MFS porter of Stackebrandtia nassauensis (D3Q871)

 
2.A.1.21.12Probable multidrug-efflux transporter Rv1258c/MT1297BacteriaRv1258c of Mycobacterium tuberculosis
 
2.A.1.21.13Uncharacterized MFS-type transporter yjbBBacilli

YjbB of Bacillus subtilis

 
2.A.1.21.14Uncharacterized MFS-type transporter Mb0038cActinobacteriaMb0038c of Mycobacterium bovis
 
2.A.1.21.15

MFS Homologue

Actinobacteria

MFS homologue of Streptomyces coelicolor (Q9X9Y0)

 
2.A.1.21.16

MFS Homologue

Actinobacteria

MFS homologue of Streptomyces coelicolor (Q9X8T4)

 
2.A.1.21.17

Uncharacterized MFS-type transporter YxaM

Bacilli

YxaM of Bacillus subtilis

 
2.A.1.21.18

Uncharacterized protein

Actinobacteria

Uncharacterized protein of Streptomyces coelicolor

 
2.A.1.21.19

Uncharacterized Major Facilitator

Actinobacteria

UMF of Streptomyces coelicolor

 
2.A.1.21.2

The multidrug (erythromycin, tetracycline, puromycin, bleomycin) resistance protein, Cmr

Bacteria

Cmr of Corynebacterium glutamicum

 
2.A.1.21.20

Unidentified Major Facilitator

Proteobacteria

UMF of Pseudomonas syringae

 
2.A.1.21.21

Unidentified major facilitator

Actinobacteria

UMF of Saccharomonospora marina

 
2.A.1.21.22

Macrolide efflux pump, MefE (Mef; MefA) of 405 aas.  Induced by erythromycin and the antimicrobial peptide, LL-37 (Zähner et al. 2010).  May act in conjunction with Mel (Q93QE4), an ABC-type ATPase that is encoded in the same operon with the mefA gene (Ambrose et al. 2005).

Firmicutes

MefE of Streptococcus pneumoniae

 
2.A.1.21.23

Uncharacterized MFS permease of 433 aas and 12 TMSs

UP of Deinococcus geothermalis

 
2.A.1.21.24

MFS_1 protein of 476 aas and 12 TMSs.

MFS_1 of Bifidobacterium longum

 
2.A.1.21.3The tetracycline resistance determinant, TetV BacteriaTetV of Mycobacterium smegmatis
 
2.A.1.21.4Multidrug resistance efflux pump, Tap BacteriaTap of Mycobacterium fortuitum
 
2.A.1.21.5The putative bacilysin exporter, BacEBacteriaBacE of Bacillus subtilis (P39642)
 
2.A.1.21.6The tetracycline resistance efflux pump, TetA(P) (Bannam et al., 2004) (21% identity (e-07) with 2.A.1.21.5 and 22% identity (2xe-7) with 2.A.1.2.10). It may be the link between DHA1 and DHA3.

Bacteria

TetA (P) of Clostridium perfringens (Q46305)

 
2.A.1.21.7

The Staphyloferrin A (siderophore) exporter, NWMN-2081 (Beasley et al. 2009). Independently suggested to be a macrolide exporter (Marklevitz and Harris 2016).

Bacteria

NWMN-2081 of Staphylococcus aureus (A6QJ21)

 
2.A.1.21.8

The putative macrolide exporter, TIGR00900 (most similar to 2.A.1.21.1).

Bacteria

TIGR00900 of Bacillus clausii (Q5WAS7)

 
2.A.1.21.9

MFS carrier of unknown function

Archaea

MFS carrier of Thermoplasma acidophilum (Q9HLP1)

 


2.A.1.22 The Vesicular Neurotransmitter Transporter (VNT) Family (Related to the SP Family (TC #2.1.1))


Examples:

TC#NameOrganismal TypeExample
2.A.1.22.1

Synaptic vesicle neurotransmitter (e.g., dopamine) transporter, SV2.  This protein localizes to neurotransmitter-containing vesicles and has a nucleotide binding site (Yao and Bajjalieh 2009).

Animals

SV2 of Rattus norvegicus

 
2.A.1.22.2

Synaptic vesicle glycoprotein 2B of 556 aas

Animals

Glycoprotein 2B of Tribolium castaneum

 
2.A.1.22.3

AgaP of 537 aas

Animals (Insects)

AgaP of Anopheles gambiae

 
2.A.1.22.4

Uncharacterized protein of 537 aas

Animals

UP of Acyrthosiphon pisum

 
2.A.1.22.5

Uncharacterized protein of 561 aas

Animals

UP of Trichoplax adhaerens (Trichoplax reptans)

 


2.A.1.23 The Conjugated Bile Salt Transporter (BST) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.23.1Conjugated bile salt:H+ symporter, CbsT1 BacteriaCbsT1 of Lactobacillus johnsonii 100-100
 
2.A.1.23.2Taurocholate:cholate antiporter, CbsT2BacteriaCbsT2 of Lactobacillus johnsonii 100-100 (AAC34380)
 


2.A.1.24 The Unknown Major Facilitator-1 (UMF1) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.24.158.8 KDa protein, YCL038c YeastYCL038c of Saccharomyces cerevisiae
 
2.A.1.24.2

Vacuolar amino acid (Arg, Lys, His) transporter, Atg22 (Autophagy-related protein-22) (Sugimoto et al. 2011).

Yeast

Atg22 of Schizosaccharomyces pombe (Q09812)

 
2.A.1.24.3

MFS permease

Bacteria

MFS permease of Chloroflexus aurantiacus (A9WGR7)

 
2.A.1.24.4

MFS permease

Bacteria

MFS permease of Myxococcus xanthus (Q1CWQ3)

 
2.A.1.24.5

MFS permease

Actinobacteria

MFS permease of Micrococcus luteus (Micrococcus lysodeikticus)

 
2.A.1.24.6

MFS porter of 474 aas

Proteobacteria

MFS porter of Hyphomonas neptunium

 


2.A.1.25 The Peptide-Acetyl-Coenzyme A Transporter (PAT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.25.1

The endoplasmic reticular/Golgi acetyl-CoA:CoA antiporter 1, ACATN/ACATN1 (SLC33A1).  Allows acetylation of sialic acid residues in gangliosides and lysine residues in membrane proteins.  It is associated with neurodegenerative disorders such as sporadic amyotrophic laterial sclerosis (ALS) and Spastic Paraplegia 42, and it is essential for motor neuron viability (Hirabayashi et al. 2013).

Animals

SLC33A1 of Homo sapiens

 
2.A.1.25.2

Cell wall degradation product (peptides and glycopeptides including N-acetylglucosaminyl β-1,4-anhydro-N-acetyl-muramyl-tripeptide) as well as penicillin derivative uptake porter, AmpG (Cheng and Park 2002).

Bacteria

AmpG of E. coli (P0AE16)

 
2.A.1.25.3The AmpG peptidoglycan uptake porter; part of the peptidoglycan recycling pathway (Garcia and Dillard, 2008)BacteriaAmpG of Neisseria gonorrhoeae (Q5F6G0)
 
2.A.1.25.4

Putative peptide/acetyl-CoA transporter of 560 aas and 12 TMSs.

Uncharacterized protein of Saccharomyces cerevisiae (Baker's yeast)

 
2.A.1.25.5

Transporter of N-acetylglucosamine anhydrous N-acetylmuramyl peptides, AmpG (Kong et al. 2010).  Necessary for induction of β-lactam resistance (Zhang et al. 2010).

Bacteria

AmpG of Pseudomonas aeruginosa

 


2.A.1.26 The Drug:H+ Antiporter-4 (DHA4) Family; formerly the Unknown Major Facilitator-2 (UMF2) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.26.141.4 KDa Protein, YcaD BacteriaYcaD of E. coli
 
2.A.1.26.2

MFS porter, YfkF; possible drug exporter

Bacteria

YfkF of Bacillus subtilis (O34929)

 
2.A.1.26.3

Multidrug resistance efflux porter, BC3310 of 396 aas and 12 TMSs.  Exports ethidium bromide, sodium dodecyl sulfate and silver nitrate.  D105 in TMS4 is essential for activity (Kroeger et al. 2015).

BC3310 of Bacillus cereus

 


2.A.1.27 The Phenyl Propionate Permease (PPP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.27.1

The phenylpropionate porter, HcaT (YfhS) (Díaz et al. 1998).

Bacteria

HcaT (YfhS) of E. coli

 


2.A.1.28 The Feline Leukemia Virus Subgroup C Receptor (FLVCR) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.28.1

Cell surface receptor (c-receptor) for anemia-inducing feline leukemia virus subgroup C (FLCVR); functions in haem export in haemopoietic cells (Latunde-Dada et al., 2006Khan and Quigley, 2011). May cause Diamond-Blackfan anemia when defective (Keel et al., 2008). Mutations of FLVCR1 in posterior column ataxia and retinitis pigmentosa result in the loss of heme export activity (Yanatori et al., 2012). Heme accumulation causes toxicity.  FLVCR1 is co-induced upon iron insufficiency in the placenta with the LDL recpetor-related protein 1 (LRP1) heme receptor, and these two proteins may be important for neonatal iron status (Cao et al. 2014).  It is required for erythroid and αβ-, CD4 and CD8 T- cell development (Philip et al. 2015).

Animals

C-receptor of Homo sapiens

 
2.A.1.28.2The MFS-Domain7 protein (516aa)
(the MFS-D7 mRNA is expressed in many human tissues, especially in lungs and testis).
AnimalsMFSD7 of Mus musculus
 
2.A.1.28.3

Unknown major facilitator

Bacteria

UMF of Coriobacterium glomerans (F2NBU7)

 
2.A.1.28.4

The Fowler syndrome-associated protein, feline leukemia virus subgroup C receptor-related protein 2, is a heme importer (Duffy et al., 2010).

Animals

FLVC2 of Homo sapiens (Q9UPI3)

 
2.A.1.28.5

MFS porter

Bacteria

MFS porter of Leptospira biflexa (B0SL69)

 
2.A.1.28.6

Electrogenic DIRC2 (Disrupted in renal carcinoma 2) (glycosylated and proteolytically processed (Savalas et al., 2011)). Targeted to lysosomes via an N-terminal dileueine motif. 

Animals

DIRC2 of Homo sapiens (Q96SL1)

 
2.A.1.28.7Feline leukemia virus subgroup C receptor-related protein 1

Animals

FLVCR1 of Felis catus
 


2.A.1.29 The Unknown Major Facilitator-3 (UMF3) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.29.1Archaeal open reading frame ArchaeaOrf of Archaeoglobus fulgidus
 
2.A.1.29.2Archaeal open reading frame ArchaeaOrf of Aeropyrum pernix
 
2.A.1.29.3

Bacterial unknown major facilitator

Bacteria

UMF3 member of Frankia sp. Eul1c (E3J3E7)

 


2.A.1.3 The Drug:H+ Antiporter-2 (14 Spanner) (DHA2) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.3.1

The main boron exporter in yeast, Atr1 (Kaya et al. 2009) (Aminotriazole, 4-nitroquinoline-N-oxide, etc.):H+ antiporter. Also exports L-cysteine (Yamada et al., 2006).

Yeast

Atr1 of Saccharomyces cerevisiae

 
2.A.1.3.10Methylenomycin:H+ antiporterGram-positive bacteriaMmrB of Bacillus subtilis
 
2.A.1.3.11Puromycin:H+ antiporterGram-positive bacteriaPur8 of Streptomyces lipmanii
 
2.A.1.3.12Tetracenomycin:H+ antiporterGram-positive bacteriaTcmA of Streptomyces glaucescens
 
2.A.1.3.13Unconjugated bile acid uptake transporterBacteriaBaiG of Eubacterium sp. strain VPI 12708
 
2.A.1.3.14Methylviologen (paraquat):H+ antiporter
(also exports ethidium bromide, acriflavin, malachite green, pyonine B and benzyl viologen)
BacteriaSmvA of Salmonella typhimurium
 
2.A.1.3.15Rifamycin:H+ antiporterBacteriaRifP of Amycolatopsis mediterranei
 
2.A.1.3.16

The Me2+·tetracycline:2H+ antiporter
(Me2+ = Co2+, Mg2+, Mn2+) (also probably
a Na+ or K+:2H+ antiporter) (Wang et al. 2000).

Bacteria

TetA(L) of Bacillus subtilis

 
2.A.1.3.17The trimethoprim-sensitivity protein, YebQ (increases sensitivity to trimethoprim)BacteriaYebQ of E. coli
 
2.A.1.3.18

Efflux pump for plant-bacterial signaling molecules, phytoalexins, flavonoids and salicylate as well as drugs, RmrB

Bacteria

RmrB of Rhizobium etli

 
2.A.1.3.19

Paraquat efflux pump, PqrB (Cho et al., 2003)

Bacteria

PqrB of Streptomyces coelicolor (AAG45950)

 
2.A.1.3.2

Exporter of CCCP, nalidixic acid, rhodamine 6G, methylviologen, deoxycholate, growth inhibitory steroid hormones (estradiol and progesterone) (Elkins and Mullis, 2006) SDS, organomercurials, etc. (Nishino and Yamaguchi 2001).

Gram-negative bacteria

EmrB of E. coli (P0AEJ0)

 
2.A.1.3.20Long chain fatty acid efflux pump, FarB (Lee et al., 2003) (exports antimicrobial long chain fatty acids; functions with MFP auxillary protein, FarA (TC# 8.A.1.1.2)) (Lee et al., 2006)BacteriaFarB of Neisseria gonorrhoeae (AAD54074)
 
2.A.1.3.21Siderophore, achromobactin efflux pump, YhcA (Franza et al., 2005)BacteriaYhcA of Erwinia (Pectobacterium) chrysanthemi (AAL14569)
 
2.A.1.3.22The Tet38 tetracycline-resistance protein of Staphylococcus aureus (Truong-Bolduc et al., 2005)BacteriaTet38 of Staphylococcus aureus (AAV80464)
 
2.A.1.3.23The NorB multidrug resistance pump (exports hydrophilic quinolones, ethidium bromide, cetrimide, sparfloxacin, moxifloxacin and tetracycline) (Truong-Bolduc et al., 2005)BacteriaNorB of Staphylococcus aureus (BAB42529)
 
2.A.1.3.24

The VceAB multidrug (hydrophobic compounds including deoxycholate (DOC), antibiotics, such as chloramphenicol and nalidixic acid, and the proton motive force uncoupler, cyanide carbonyl m-chlorophenylhydrazone (CCCP)) resistance pump (functions with outer membrane VceC (TC#1.B.17.3.6) or OprM (2.A.6.2.21), an OMF family member; The C-terminal domain of the Pseudomonas aeruginosa OprM and the alpha-helical hairpin domain of Vibrio cholerae VceA play important roles in recognition/specificity/recruitment in the assembly of a functional, VceAB-OprM chimeric efflux pump (Bai et al., 2010).

Bacteria

VceAB of Vibrio cholerae
VceB (MFS), NP_231054
VceA (MFP), NP_231053

 
2.A.1.3.25

Actinorhodin (blue pigmented antibiiotic) transporter, ActII-2

Bacteria

ActII-2, Actinorhodin transporter of Streptomyces coelicolor (P46105).

 
2.A.1.3.26

Novobiocin/deoxycholate exporting MDR efflux pump, MdtD or YegB (Baranova and Nikaido, 2002).  Also exports arabinose but not xylose (Koita and Rao 2012). Regulated by the transcription factor, BaeR (Nagakubo et al. 2002).

Bacteria

YegB of E. coli (P36554)

 
2.A.1.3.27

The vacuolar basic amino acid (Arg, Lys, His) transporter, Vba3 (Shimazu et al., 2005)

Yeast

Vba3 of Saccharomyces cerevisiae (P25594)

 
2.A.1.3.28MDR multidrug efflux pump, EbrE (involved in colony growth, dependent on Ca2+, Mg2+, Na+ and K+) (Lee et al., 2007)BacteriaEbrE of Streptomyces lividans (Q939A4)
 
2.A.1.3.29The metal:tetracycline/oxytetracycline resistance efflux pump, TctB (563 aas)BacteriaTctB of Streptomyces rimosus (O69070)
 
2.A.1.3.3

(Acriflavin, ethidium bromide, fluoroquinolones, etc.):H+ antiporter (Li et al. 2004; Rodrigues et al. 2011).

Gram-positive bacteria

LfrA of Mycobacterium smegmatis

 
2.A.1.3.30Lincomycin resistance protein; Lincomycin:H+ antiporter, LmrBBacteriaLmrB of Bacillus subtilis (O35018)
 
2.A.1.3.31

The hydrophilic fluoroquinolones efflux pump, QepA (Perichon et al., 2008). Exports hydrophilic quinolones, norfloxacin, and ciprofloxacin.

Bacteria

QepA of E. coli (A5H8A5)

 
2.A.1.3.32Landomycin A efflux pump, LanJ (Otash et al., 2008)BacteriaLanJ of Streptomyces cyanogenus (Q9ZGB6)
 
2.A.1.3.33Multidrug (including novobiocin, streptomycin, and actinomycin D) resistance porter, MdtP (YusP)

Bacteria

MdtP of Bacillus subtilis (O32182)

 
2.A.1.3.34

The P55 drug efflux pump (Rv141Oc) (extrudes drugs including rifampicin and clifazimine, first- and second-line anti-tuberculosis drugs. CCCP and valinomycin inhibited drug resistance) (Ramón-García et al., 2009).  P55 also exports malachite green, ethidium bromide, isoniazid and ethambutol (Bianco et al. 2011).  Functions together with the outer membrane lipoprotein porin, LprG, also called P27 and Lpp-27 (Bianco et al. 2011; Farrow and Rubin 2008).  Required together with LprG for normal colony morphology and sliding motility, possibly due to alterred cell wall composition (Farrow and Rubin 2008).

Bacteria

P55 drug efflux pump of Mycobacterium tuberculosis (P71678)

 
2.A.1.3.35

The 14 TMS FmtC (MprF: Multiple peptide resistance factor) protein of 840 aas, involved in methicillin and daptomycin resistance. Residues 1-550 comprise a 14TMS MFS permease domain while residues 551-840 comprise a "phosphatidylglycerol lysyl transferase" (or synthetase) domain (DUF2156), also called "lysyl cardiolipid synthase" (Oku et al. 2004; Staubitz et al. 2004; Ernst et al. 2009). FmtC may be distantly related to lysyl-tRNA synthetases (TC# 9.B.111). Similar to 2.A.1.3.44 in all these respects.  Ernst et al. 2015 and Slavetinsky et al. 2012 have reported that TMSs 1-6 of FmtC of S. aureus is a flippase for lysylinated phosphatidyl glycerol, and that the entire system is a dimer.

Bacteria

FmtC of Staphylococcus aureus (D1QCY9)

 
2.A.1.3.36

EmrKY-TolC MDR efflux pump (Nishino and Yamaguchi 2001). (also exports cysteine (Yamada et al., 2006)) (similar to 2.A.1.3.2)

Bacteria

EmrKY-TolC of E. coli
EmrK (MFP) (C5W790)
EmrY (MFS) (C5W789)

 
2.A.1.3.37

The uridine/deoxyuridine/5-fluorouridine uptake transporter, UriP (llmg_0856) (480aas; 14TMSs) (Martinussen et al., 2010)

Bacteria

UriP of Lactococcus lactis (A2RJJ9)

 
2.A.1.3.38

MFS porter of unknown function

Bacteria

MFS porter of Streptomyces viridochromogenes (D9X7X8)

 
2.A.1.3.39

The antimicrobial efflux pump, LmrS. Exports linezolid and tetraphenylphosphonium chloride (TPCL) > sodium dodecyl sulfate (SDS), trimethoprim, and chloramphenicol. (most similar to LmrB (2.A.1.3.30)) (Floyd et al., 2010).

Bacteria

LmrS of Staphylococcus aureus (Q5HE38)

 
2.A.1.3.4

(Mono- and divalent organocation):H+ antiporter. Transmembrane helix 12 of QacA lines the bivalent cationic drug binding pocket (Hassan et al., 2007).

Gram-positive bacteria

QacA of Staphylococcus aureus (P0A0J9)

 
2.A.1.3.40

The phenazine resistance pump. Also exports D-alanyl-griseoluteic acid; possibly in conjunction with a chaperone protein, EhpR. The crystal structure of EhpR is known (Yu et al., 2011). Note: Phenazines are toxic redox active secondary metabolites that many bacteria secrete.

Bacteria

EhpJ of Panloea (Enterobacter) agglomerans (O32600)

 
2.A.1.3.41

Rv0585c; 795aas: 1 - 220aas, TMSs 1-6; 221-490aas, kinase domain; 491-795, TMS: 7-14. The C-terminal 8 TMS hydrophobic domain is homologous to an N-terminal domain in fused Mg2+-ATPases (3.A.3.4.3 and 3.A.3.4.4) and members of family 9.B.3.

Bacteria

Rv0585c of Mycobacterium tuberculosis (O53781)

 
2.A.1.3.42

Putative oxacillin resistance-associated protein, FmtC (872 aas; 14 N-terminal TMSs (residues 1-530) plus a largely hydrophilic DUF2156 domain (residues 531-872). Similar throughout its length to FmtC of Staphylococcus aureus (2.A.1.3.35). Residues 67-326 (TMSs 2-8) are homologous to residues 527-786 (TMSs 8-14) in Rv0585c of Mycobacterium tuberculosis (2.A.1.3.43). Residues 6-314 are also homologous  to an extra hydrophobic domain in Mg2+ P-type ATPases  (3.A.3.4.3 and 3.A.3.4.4). The C-terminal domain belongs to the DUF2156 superfamily. Homologues of the hydrophilic domain retrieved with NCBI BLAST searches are annotated as "putative" lysylphosphatidyl-glycerol synthetase. Some include full length MFS fusion proteins.

Bacteria

FmtC of Brucella melitensis (D1F3T8)

 
2.A.1.3.43

MFS efflux pump, AmvA (AedF). Mediates drug, dye, detergent, antibiotic and disinfectant resistance (Rajamohan et al., 2010; Hassan et al. 2011). 98.6% identical to AdeF (2.A.1.3.46).

Bacteria

AmvA of Acinetobacter baumannii (C4PAW9)

 
2.A.1.3.44

MDR pump, AdeF (AmvA) exports ethidium, DAPI, and chlorhexidine (Hassan et al. 2011). 98.6% identical to AmvA (2.A.1.3.45).

Bacteria

AdeF of Acinetobacter baumannii (A3M6E0)

 
2.A.1.3.45

Putative MFS permease TMSs 10-13 (shows limited sequence similarity with TMSs 2-5 in 9.B.111.1.1 and 9.B.111.1.2).

Bacteria

MFS permease of Bilophila wadsworthia (E5Y3Y1)

 
2.A.1.3.46

The phenicol (florfenicol/chloramphenicol) exporter, FexB (Liu et al., 2012)

Firmicutes 

FexB of Enterococcus faecium (G9FS16)

 
2.A.1.3.47

The trichothecene efflux pump, TRI12 (Alexander et al., 1999; Wuchiyama et al., 2000). Trichothecenes are plant growth promoters and bio-control agents (See also Fang et al. (2012)). TRI12 secretes toxic trichothecene compounds like T-2 toxin, nivalenol and deoxynivalenol.

Fungi

TRI12 of Fusarium sporotrichioides (Q9C1B3)

 
2.A.1.3.48

Probable multidrug-efflux transporter Rv1634/MT1670

Bacteria

Rv1634 of Mycobacterium tuberculosis

 
2.A.1.3.49

Multidrug resistance protein Stp (Spectinomycin tetracycline efflux pump)

Bacteria

Stp of Myconbacterium tuberculosis

 
2.A.1.3.5(Pristinamycin I and II, rifamycin, etc.):H+ antiporterGram-positive bacteriaPtr of Streptomyces pristinaespiralis
 
2.A.1.3.50Multidrug resistance protein 3 (Multidrug-efflux transporter 3)Bacilli

Bmr3 of Bacillus subtilis

 
2.A.1.3.51Probable transport protein HsrA (High-copy suppressor of RspA)Bacteria

HsrA of Escherichia coli

 
2.A.1.3.52

Drug resistance protein YOR378W.  Does not export boron (Bozdag et al. 2011).

Fungi

YOR378W of Saccharomyces cerevisiae

 
2.A.1.3.53Azole resistance protein 1FungiAZR1 of Saccharomyces cerevisiae
 
2.A.1.3.54Protein SGE1 (10-N-nonyl acridine orange resistance protein) (Crystal violet resistance protein)FungiSGE1 of Saccharomyces cerevisiae
 
2.A.1.3.55

Uncharacterized MFS-type transporter YubD

Bacilli

YubD of Bacillus subtilis

 
2.A.1.3.56

Uncharacterized MFS-type transporter YvmA

BacilliyvmA of Bacillus subtilis
 
2.A.1.3.57

Uncharacterized MFS-type transporter YwoD

Bacilli

YwoD of Bacillus subtilis

 
2.A.1.3.58

Uncharacterized MFS-type transporter YfiU

Bacilli

YfiU of Bacillus subtilis

 
2.A.1.3.59

MDR efflux pump, NorC (Truong-Bolduc et al. 2006). Proposed to be a quinolone resistance exporter, NorB (Marklevitz and Harris 2016).

Firmicutes

NorC (NorB) of Staphylococcus aureus

 
2.A.1.3.6Me2+·tetracycline:2H+ or 2K+ antiporter
(the optimal Me2+ = Co2+) (Also transports Na+ or K+out in exchange for 2H+.)
BacteriaTetK of Staphylococcus aureus (P02983)
 
2.A.1.3.60

MDR efflux pump, SdrM.  Exports norfloxacin, acriflavin and ethidium bromide (Yamada et al. 2006).

Firmicutes

SdrM of Staphylococcus aureus

 
2.A.1.3.61

MDR efflux pump, MdeA.  Exports hoechst 33342, doxorubicin, daunorubicin, tetraphenyl phosphonium, ethidium bromide and rhodamine 6G (Yamada et al. 2006).

Firmicutes

MdeA of Staphylococcus aureus

 
2.A.1.3.62

MDR efflux pump, AedC (Hassan et al. 2011).  Shown to export chloramphenicol and tetracycline.

Proteobacteria

AedC of Acinetobacter baumannii

 
2.A.1.3.63

Iron homeostasis protein, AedD; may function in siderophore export (Hassan et al. 2011).

Proteobacteria

AedD of Acinetobacter baumannii

 
2.A.1.3.64

Uptake permease for cholate (steroid) metabolites, CamM of 513 aas and 14 TMSs.  Uptake of 3,7(R),12(S)-trihydroxy-9-oxo-9,10-seco-23,24-bisnorchola-1,3,5(10)-trien-22-oate was observed (Swain et al. 2012).

Actinobacteria

CamM of Rhodococcus jostii

 
2.A.1.3.65

ThMFS1 of 563 aas and 14 TMSs.  Catalyzes export of fungicides causing tolerance.  It exports trichodermin, but it is not the only exporter of this secondary metabolite (Liu et al. 2012). Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents (Chaudhary et al. 2016).

Fungi

MFS1 of Trichoderma harzianum (Hypocrea lixii)

 
2.A.1.3.66

MFS permease of 413 aas and 12 TMSs. Encoded within the SoxR regulon; possibly a drug exporter (Naseer et al. 2014).

Proteobacteria

MFS permease of Pseudomonas aeruginosa

 
2.A.1.3.67

MFS porter of 462 aas and 14 TMSs

Deinococcus/Thermus

MFS porter of Deinococcus radiodurans

 
2.A.1.3.68
The PfMFS transporter (551 aas; 14 putative TMSs) is involved in the acid resistance and 
intracellular pH homeostasis of Penicillium funiculosum (Xu et al. 2014). This protein was
not in UniProt, and its closest orthologue, PmMFS of Penicillium marneffei, is therefore
presented here.

Fungi

PfMFS of Talaromyces (Penicillium) funiculosum

 
2.A.1.3.69

Drug resistance pump, YMR279c of 540 aas.  When overexpressed, confers boron resistance, but is not induced by boron (Bozdag et al. 2011). 

YMR279c of Saccharomyces cerevisiae (Baker's yeast)

 
2.A.1.3.7Actinorhodin:H+ antiporter, ActVa or ActA (Tahlan et al., 2007)Gram-positive bacteriaActVa of Streptomyces coelicolor
 
2.A.1.3.70

Probable exporter of aromatic compounds of 559 aas and 16 putative TMSs in an apparent 4 + 4 + 4 + 4 arrangement. May function in aromatic compoound detoxification.  Regulated by a MarR-like transcriptional regulator that is encoded in the same operon. Ten-fold induction occurs in response to aromatic aldehydes such as benzaldehyde (Fiorentino et al. 2007). The same MarR protein controls transcription of a gene encoding an NADH-dependent alcohol dehydrogenase (Sso2536).

Sso1351 of Sulfolobus solfataricus

 
2.A.1.3.71

Putative multidrug-resistance exporter of 553 aas and 14 putative TMSs, KNQ1. It is a drug efflux permease for several toxic compounds that in multiple copies confer increased dithiothreitol resistance. KNQ1 does not export dithiothreitol or function in recombinant protein secretion. KNQ1 gene amplification or deletion resulted in enhanced transcription of iron transport genes, suggesting,  a role in iron homeostasis on which dithiothreitol tolerance may depend (Marchi et al. 2007).

KNQ1 of Kluyveromyces lactis (Yeast) (Candida sphaerica)

 
2.A.1.3.72

Riboflavin transporter of 456 aas and 14 TMSs, RibZ (Gutiérrez-Preciado et al. 2015).

RibZ of Peptoclostridium difficile (Clostridium difficile)

 
2.A.1.3.73

Multidrug resistance Mfs1 protein of 583 aas and 14 TMSs.  Exports natural mycotoxins and a variety of fungicides in Mycosphaerella graminicola (Roohparvar et al. 2007).

MDR exporter, Mfs1 of Zymoseptoria tritici (Speckled leaf blotch fungus) (Septoria tritici)

 
2.A.1.3.8Cephamycin:H+ antiporterGram-positive bacteriaCmcT of Nocardia lactamdurans
 
2.A.1.3.9Lincomycin:H+ antiporterGram-positive bacteriaLmrA of Streptomyces lincolnensis
 


2.A.1.30 The Putative Abietane Diterpenoid Transporter (ADT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.30.1

Putative abietane uptake permease (in a gene cluster for degradation of abietane diterpenoids), DitE, of 547 aas and 12 TMSs (Martin and Mohn 2000). Abietane diterpenoids are defense compounds synthesized by trees that are abundant in natural environments and occur as significant pollutants from pulp and paper production (Smith et al. 2007).

Bacteria

DitE of Pseudomonas abietaniphila BKME-9

 
2.A.1.30.2

Uncharacterized MFS transporter of 410 aas and 12 TMSs.

MFS porter of Actinomadura macra

 


2.A.1.31 The Nickel Resistance (Nre) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.31.1The Ni2+ efflux pump, NreB (Ni2+ inductible) BacteriaNreB of Achromobacter xylosoxidans plasmid pTOM
 
2.A.1.31.2The Ni2+ resistance protein, NrsD BacteriaNrsD of Synechocystis PCC6803
 
2.A.1.31.3

The unknown porter, YfiS

Bacteria

YfiS of Bacillus subtilis (O31561)

 
2.A.1.31.4
Kurstakin/surfactin exporter of 417 aas (in B. subtilis) (Li et al. 2015).  This protein is an orthologue of the B. subtilis protein (Li et al. 2015).

Firmicutes

KrsE of Bacillus cereus

 
2.A.1.31.5

Uncharacterized MFS porter of 455 aas

Green Algae

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 
2.A.1.31.6

Uncharacterized MFS porter (residiues 1 - 450) with hydrophilic C-terminal protein kinase domain.  The protein is of 858 aas.

Green algae

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 


2.A.1.32 The Putative Aromatic Compound/Drug Exporter (ACDE) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.32.1

Putative aromatic compound/drug exporter. Enhances expression of the sigma X gene that functions to modify the cell envelope (Turner and Helmann, 2000). yitG is reported to be a mutator gene that inhibits transition base substitutions (Sasaki and Kurusu, 2004).

Bacilli

YitG of Bacillus subtilis

 
2.A.1.32.2Bacillibactin exporter, YmfE (199aas; 6TMSs) (Miethke et al., 2008) (resembles the 2nd half of YitG of B. subtilis (2.A.1.32.1). The sequence provided under acc# O31763 is only a fragment of the full length gene.BacteriaYmfE of Bacillus subtilis (O31763)
 
2.A.1.32.3

Putative copper/multidrug efflux protein, YfmO.  The yfmPO operon is autoregulated by the MerR homologue, YfmP (a repressor). The copZA operon encodes CopA, a copper ATPase (TC# 3.A.3.5.18) which is induced by a copper dependent mechanism. Since a yfmP null mutant had poor copZA induction but elevated levels of the YfmO efflux pump, YfmO could catalyze copper efflux and be responsible for reduced copZA induction. Consistent with this model, a yfmP yfmO double mutant showed normal induction by copper (Gaballa et al. 2003).

Bacilli

YfmO of Bacillus subtilis

 


2.A.1.33 The Putative YqgE Transporter (YqgE) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.33.1

MFS homologue, YqgE. Its gene is co-transcribed with ftsI, encoding the peptidoglycan transpeptidase that crosslinks peptidoglycan strands, releasing free D-alanine. Possibly YqgE is a D-alanine uptake porter. Mutations enhance activity of sigmaW (Turner and Helmann 2000).

Bacteria; Archaea

YqgE of Bacillus subtilis (P54487)

 
2.A.1.33.2

YqgE homologue

Bacteria

YqgE homologue of Bacteroides ovatus (A7LYG9)

 
2.A.1.33.3

YqgE homologue (encoded near an α-glucuronidase; GH31 family; divergently transcribed). Therefore could be an uptake system for glucouronides.

Archaea

YqgE homologue of Sulfolobus tokodaii (Q96XI6)

 


2.A.1.34 The Sensor Kinase-MFS Fusion (SK-MFS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.34.1

Sensor kinase (N-terminal 400 residues)/MFS fusion protein. The N-terminal domain resembles the sensor kinase of 414 aas of Anaeromyxobacter sp. KJ (ACG71775). The C-terminal MFS domain most resembles those of TC family 2.A.1.2 (DHA1).

Bacteria

Fusion protein of Bordetella pertussis (Q7VWI9)

 
2.A.1.34.2

MFS carrier with N-terminal hydrophilic domain with 3 putative TMSs of about 2880 aas. The protein is of 676 aas with 15 TMSs.

MFS permease fusion protein of Fodinicurvata fenggangensis

 
2.A.1.34.3

MFS carrier of 526 aas and an N-terminal hydrophilic domain with 1 TMS. 

MFS carrier fusion protein of Herbaspirillum huttiense

 


2.A.1.35 The Fosmidomycin Resistance (Fsr) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.35.1

The fosmidomycin resistance (Fsr) protein (confers fosmidomycin, trimethoprim and carbonylcyanide m-chlorophenylhydrazone (CCCP) resistance) (Fujisaki et al. 1996).

Bacteria

Fsr of E. coli

 
2.A.1.35.2The cationic microbial peptide resistance (RosA) proteinBacteriaRosA of Yersinia enterocolitica
 
2.A.1.35.3

MFS transporter of 388 aas and 12 TMSs

Firmicutes

MFS porter of Sulfobacillus acidophilus

 


2.A.1.36 The Acriflavin-sensitivity (YnfM) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.36.1

The acriflavin-sensitivity protein, YnfM (increases sensitivity to acriflavin specifically).  Also exports arabinose but not xylose (Koita and Rao 2012).

Bacteria

YnfM of E. coli

 
2.A.1.36.2

Hypothetical MFS carrier

Bacteria

MFS carrier of Serratia proteamaculans (A8GHT9)

 
2.A.1.36.3

Putative uncharacterized transporter YgaY

Bacteria

YgaY of Escherichia coli

 
2.A.1.36.4

MdrA.  Putative MDR transporter that may export cationic and hydrophobic compounds, Sco4007.  Regulated by a TetR-like repressor that binds drugs (Hayashi et al. 2013).

Actinobacteria

MdrA (Sco4007) of Streptomyces coelicolor

 
2.A.1.36.5

MFS carrier of 389 aas

Proteobacteria

MFS carrier of Rhizobium loti

 


2.A.1.37 The Unknown Major Facilitator-4 (UMF4) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.37.1

Unknown Major Facilitator-4 family member, UMF4A, of 396 aas and 12 TMSs.

Spirochaetes

UMF4A of Brachyspira pilosicoli

 
2.A.1.37.2

UMF4 family member of 399 aas and 12 TMSs, UMF4B.

Spirochaetes

UMF4B of Brachyspira murdochii

 
2.A.1.37.3

UMF4C of 407 aas and 12 TMSs.

Euryarchaeota

UMF4C of Ferroplasma sp. 

 
2.A.1.37.4

UMF4D of 399 aas and 12 TMSs

Spirochaetes

UMF4D of Sphaerochaeta pleomorpha

 
2.A.1.37.5

UMF4E of 373 aas and 12 TMSs

Crenarchaeota

UMF4E of Caldisphaera lagunensis

 


2.A.1.38 The Enterobactin (Siderophore) Exporter (EntS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.38.1

The enterobactin (siderophore) exporter, EntS or YbdA (Bleuel et al., 2005).  May also export arabinose but not xylose (Koita and Rao 2012).

Bacteria

EntS (YbdA) of E. coli

 
2.A.1.38.2The putative siderophore exporter (DUF 894; Pfam 05977), VabSBacteriaVabS of Listonella anguillarum (Q0E7C5)
 
2.A.1.38.3Enterobactin exporter, EntS (Crouch et al., 2008) (probably orthologous to 2.A.1.38.1). BacteriaEntS of Salmonella typhimurium
(Q8ZR35)
 
2.A.1.38.4

Uncharacterized MFS protein of 429 aas and 12 TMSs.

UP of Lactobacillus rhamnosus

 


2.A.1.39 The Vibrioferrin (Siderophore) Exporter (PrsC) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.39.1

The vibrioferrin (siderophore) exporter, PrsC (Tanabe et al., 2003; Tanabe et al., 2006)

Bacteria

PrsC of Vibrio parahaemolyticus (BAC16546)

 
2.A.1.39.2

MFS permease of 398 aas and 12 TMSs.

MFS permease of Xanthomonas campestris

 
2.A.1.39.3

Putative efflux pump of 383 aas and 12 TMSs.

Efflux pump of Kitasatospora setae (Streptomyces setae)

 


2.A.1.4 The Organophosphate:Pi Antiporter (OPA) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.4.1Sugar-P:Pi antiporter (transports many sugar-phosphates - both 1- and 6-P esters)BacteriaUhpT of E. coli (P0AGC0)
 
2.A.1.4.10

2-phosphonoacetate/2-phosponopropionate uptake porter of 428 aas, PhnB.  The PhnA protein is a hydrolase, and PhnC is a positive transcriptional regulator.  Induction occurs with either of the two substrates (Kulakova et al. 2001).

Proteobacteria

PhnB of Pseudomonas fluorescens

 
2.A.1.4.11

Glycerol-3-phosphate:inorganic phosphate antiporter, GlpT (Frohlich and Audia 2013).

Proteobacteria

GlpT of Rickettsia prowazekii

 
2.A.1.4.2

P-glycerate:Pi antiporter, Pgt.  Takes up phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate as sole sources of carbon and energy for rapid growth (Saier et al. 1975).  Not present in E. coli K12, but is present in many intracellular pathogenic strains of E. coli (Tang and Saier, unpublished observations).

Bacteria

PgtP of Salmonella typhimurium

 
2.A.1.4.3

Glycerol-P:Pi antiporter (may function by a 'rocker switch' mechanism; Law et al., 2007). The 3-d structure is known (3.3Å resolution) (Huang et al., 2003; Lemieux et al., 2005; Lemieux, 2007).

Bacteria

GlpT of E. coli

 
2.A.1.4.4Hexose-P:Pi antiporter regulatory protein; senses external glucose-6-P and transports it with high affinity and low efficiencyBacteriaUhpC of E. coli
 
2.A.1.4.5

Microsomal (ER/Golgi) glucose-6-P:Pi antiporter (glycogen storage disease (GSD1b and 1c); Gierke''s disease protein) (SLC37A2 in mice, associated with white adipose tissue obesity and expressed at high levels in macrophage) (4 isoforms present in humans (Chen et al., 2008)).  SLC37A1 and A2 can not substitute for A4.  91 mutations have been observed in human patients (Chou and Mansfield 2014).  Inhibited by cholorogenic acid although SLC37A1 and A2 are not.  SLC37A3 had not been characterized by 2014 (Chou and Mansfield 2014).

Animals

SLC37A4 of Homo sapiens

 
2.A.1.4.6Glucose-6-P:Pi antiporter, Hpt (may also transport other organophosphates including C3 organophosphates).BacteriaHpt of Chlamydia pneumoniae (spQ9Z7N9 & gi9979188) & pirA72050
 
2.A.1.4.7

Putative glycerol-3-phosphate (G-3-P) transporter, G3PP (most similar to TC# 2.A.1.4.6, 22% identity).  Has been shown to catalyze glucose 6-P:Pi antiport across the endoplasmic reticular membrane(Pan et al. 2011).

Animals

SLC37A1 of Homo sapiens

 
2.A.1.4.8

solute carrier family 37 (putative glycerol-3-phosphate transporter), member 2.  Has been shown to catalyze glucose 6-P:Pi antiport across the endoplasmic reticular membrane (Pan et al. 2011).

Animals

SLC37A2 of Homo sapiens

 
2.A.1.4.9 solute carrier family 37 (glycerol-3-phosphate transporter), member 3AnimalsSLC37A3 of Homo sapiens
 


2.A.1.40 Major Facilitator Superfamily Domain-containing Protein Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.40.1Major facilitator superfamily domain-containing protein 5Animals

Mfsd5 of Danio rerio

 
2.A.1.40.2Major facilitator superfamily domain-containing protein 5

Animals

MFSD5 of Pongo abelii
 
2.A.1.40.3Major facilitator superfamily domain-containing protein 5Animalsmfsd5 of Xenopus tropicalis
 


2.A.1.41 The Putative Bacteriochlorophyll Delivery (BCD) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.41.1Putative pigment transporter (Young and Beatty, 1998)Photosynthetic bacteriaLhaA of Rhodobacter capsulatus
 
2.A.1.41.2Putative pigment transporter (Young and Beatty, 1998)Photosynthetic bacteriaPucC of Rhodobacter capsulatus
 
2.A.1.41.3Putative bacteriochlorophyll synthasePhotosynthetic bacteriaBch2 of Rhodobacter capsulatus
 


2.A.1.42 The Lysophospholipid Transporter (LplT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.42.1

The lysophospholipid transporter, LplT (Harvat et al., 2005).  Substrates include lyso-PE, lyso-cardiolipin, diacylcardiolipin, fully-deacylated cardiolipin and lyso-phosphatidylglycerol, but not lysophosphatidylcholine, lysophosphatidic acid or phosphatidic acid (Lin et al. 2016). Reacylation by acyltransferase/acyl-acyl carrier protein synthetase then occurs on the inner leaflet of the membrane.Thus, a fatty acid chain is not required for LplT transport. A "sideways sliding" mechanism was proposed to explain how a conserved membrane-embedded α-helical interface excludes diacylphospholipids from the LplT binding site to facilitate efficient flipping of lysophospho-lipids across the cell membrane (Lin et al. 2016). Thus, a fatty acid chain is not required for LplT transport. Fruther, LplT cannot transport lysophosphatidic acid, and its substrate binding was not inhibited by either orthophosphate or glycerol 3-phosphate, indicating that either a glycerol or ethanolamine headgroup is the chemical determinant for substrate recognition. Diacyl forms of PE, phosphatidylglycerol, or the tetra-acylated form of cardiolipin could not serve as competitive inhibitors .A "sideways sliding" mechanism was proposed to explain how a conserved membrane-embedded α-helical interface can exclude diacylphospholipids from the LplT binding site.

Bacteria

LplT of E. coli (NP_417312)

 
2.A.1.42.2

The lysophospholipid transporter-2-acyl glycerophosphoethanolamine acyl transferase/acyl ACP synthetase (LplT-Pls-ACS) fusion protein (Harvat et al., 2005). 

Bacteria

The fused LplT-PlsC-ACS of Bradyrhizobium japonicum (BAC47589)

 


2.A.1.43 The Putative Magnetosome Permease (PMP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.43.1The putative magnetosomal permease, MamH (Schubbe et al., 2003)BacteriaMamH of Magnetospirillum gryphiswaldense (Q6NE63)
 
2.A.1.43.2

The putative magnetosome (Fe?) permease fused to a C-terminal YedZ-like domain (von Rozycki et al., 2004). This protein has 649 aas and 18 TMSs with a C-terminal YedZ domain and is therefore in the YedZ superfamily.

Bacteria

PMP of Magnetospirillum magneticum (Q2W8K5)

 


2.A.1.44 The L-Amino Acid Transporter-3 (LAT3) Family (also called the SLC43 family)


Examples:

TC#NameOrganismal TypeExample
2.A.1.44.1The L-amino acid transporter-3, LAT3 (transports neutral amino acids such as L-leucine, L-isoleucine, L-valine, and L-phenylalanine by a Na+-independent, electroneutral, facilitated diffusion process; also transports amino acid alcohols) (Prostate cancer up-regulated gene product)AnimalsSLC43A1 of Homo sapiens
 
2.A.1.44.2L-amino acid transporter-4 (LAT4) has the same specificity and is 57% identity to LAT3. Na+, Cl- and pH independent; not trans-stimulated; two kinetic components, a low affinity component sensitive to NEM, and a high affinity component insensitive to NEM. Found in the basolateral membrane of epithelial cells in the distal tubule and collecting duct of the kidney and the crypt cells in the intestine (Bodoy et al., 2005). AnimalsSLC43A2 of Homo sapiens
 
2.A.1.44.3 solute carrier family 43, member 3AnimalsSLC43A3 of Homo sapiens
 


2.A.1.45 The 2,4-diacetylphloroglucinol (PHL) Exporter (PHL-E) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.45.1The 2,4-diacetylphloroglucinol resistance/general stress porter, PhlE (Abbas et al., 2004)BacteriaPhlE of Pseudomonas fluorescens (CAD65845)
 


2.A.1.46 The Unknown Major Facilitator-5 (UMF5) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.46.1

Probable transporter

Bacteria

Probable transporter of Bordetella pertussis (Q7W0Q7)

 
2.A.1.46.10

Probable staphylopine exporter, CntE.  Staphylopine is a broad spectrum metalophore similar to plant nicotianamine that binds several divalent ions (nickel, cobalt, zinc, copper and iron) (Ghssein et al. 2016).  The uptake system for metal bound staphylpine is TC# 3.A.1.5.43).  CntE is downstream of the genes coding for the uptake system, CntABCDF (Ghssein et al. 2016).

CntE of Staphylococcus aureus

 
2.A.1.46.2Putative transporter

Bacteria

Putative transporter of Tropheryma whipplei (Q83N16)

 
2.A.1.46.3

Putative drug resistance UMF5 family member

Eukaryotes

Putative MDR pump of Leishmania infantum

 
2.A.1.46.4

UMF15 family member

Archaea

UMF5 homologue of Methanosphaerula palustris (B8GFY3)

 
2.A.1.46.5

Putative quinolone resistance protein

Bacteria

MFS porter of Bacillus cereus (C2UR80)

 
2.A.1.46.6

UPF0226 protein YfcJ.  Catalyzes export of arabinose but not xylose (Koita and Rao 2012).

Bacteria

YfcJ of E. coli

 
2.A.1.46.7

UPF0226 protein, YhhS.  Exports arabinose but not xylose (Koita and Rao 2012).  Also may export the herbicide, glyphosate (Staub et al. 2012).

Bacteria

YhhS of E. coli

 
2.A.1.46.8

MFS carrier of 366 aa

Archaea

MFS carrier of Sulfolobus solfataricus

 
2.A.1.46.9

Uncharacterized MFS porter of 430 aas

Euryarchaea

MFS porter of Halosimplex carlsbadense

 


2.A.1.47 The Unknown Major Facilitator-6 (UMF6) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.47.1Putative transporterBacteriaPutative transporter of Lactobacillus plantarum (NP_784357)
 
2.A.1.47.2

UMF6 family member

Fermicutes

MFS carrier of Streptococcus suis (A4VY05)

 
2.A.1.47.3

Possible antibiotic peptide exporter (encoded in an operon together with lantibiotic biosynthesis enzymes)

Fermicutes

UMF6 family member of Streptococcus pneumoniae (B2IRN2)

 
2.A.1.47.4

MFS permease of 408 aas


Firmicutes

MFS permease of Streptococcus pneumoniae

 


2.A.1.48 The Vacuolar Basic Amino Acid Transporter (V-BAAT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.48.1The vacuolar basic amino acid (histidine, lysine and arginine) transporter, Vba1 (catalyzes uptake into the vacuoles (equivalent to efflux from the cytoplasm)) (most similar to family 2.A.1.3; DHA2; 13-14 putative TMSs) (Shimazu et al., 2005)YeastVba1 of Saccharomyces cerevisiae (NP_013806)
 
2.A.1.48.2The vacuolar basic amino acid (Arg, Lys, His) transporter, Vba2 (Shimazu et al., 2005)YeastVba2 of Saccharomyces cerevisiae (P38358)
 
2.A.1.48.3Vacuolar G0 arrest protein, Fnx1; involved in amino acid (e.g., his, lys, ile, asn, etc) uptake into the vacuole (Chardwiriyapreecha et al., 2008).YeastFnx1 of Schizosaccharomyces pombe (Q09752)
 
2.A.1.48.4Vacuolar amino acid uptake system, Fnx2 (Chardiwiriyapreecha et al., 2008)YeastFnx2 of Schizosaccharomyces pombe (O59726)
 
2.A.1.48.5

Originally considered to be vacuolar basic amino acid transporter 4, but it my not act on amino acids, but exports drugs such as azoles.  May also play a role in vacuolar morphology (Kawano-Kawada et al. 2015).

Fungi

VBA4 of Saccharomyces cerevisiae S288c

 


2.A.1.49 The Endosomal Spinster (Spinster) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.49.1

The spinster protein, spin1 or spns1 gene product (involved in synaptic growth regulation; interacts with Bcl-2/Bcl-xL, affecting programmed cell death) (Nakano et al., 2001; Sanyal and Ramaswami, 2002; Yanagisawa et al., 2003).  Probably transports sphingosine-1-phosphate (Fukuhara et al. 2012).

Animals

Spinster of Drosophila melanogaster (AAG43825)

 
2.A.1.49.10

MFS multidrug exporter of 429 aas and 12 TMSs.  Exports capreomycin and ethidium bromide, and deletion mutants grow faster than wild type cells (Zhang et al. 2015).

Actinobacteria

MDR pump of Mycobacterium smegmatis

 
2.A.1.49.11

Uncharacterized protein of 656 aas and 12 TMSs

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 
2.A.1.49.2

The spinster homologue, Spin1 or Spns1 gene (interacts with Bc1-2/Bc1-XL to induce a caspase-independent autophagic cell death; may be required for embryogenesis) (Yanagisawa et al., 2003). Probable spingosine-1-phosphate (or sphingolipid) transporter (Nijnik et al. 2012).

Animals

Spin1 of Homo sapiens (Q9H2V7)

 
2.A.1.49.3

Probable sphingosine-1-phosphate (or sphingolipid) transporter, spinster homologue 3 (by similarity).

Plants

Spinster homologue 3 of Arabidopsis thaliana (F4IKF6)

 
2.A.1.49.4

Protein Spinster homologue 2 (Spns2 or protein two of hearts).  Transports sphingosine-1-P (S1P) and the immunomodulating agent, FTY720 (Hisano et al. 2011; Nijnik et al. 2012).  S1P is a secreted lipid mediator that functions in vascular development. In the yolk syncytial layer, Spns2 functions in S1P secretion, thereby regulating myocardial precursor migration (Kawahara et al. 2009).

Animals

Spns2 of Danio rerio

 
2.A.1.49.5

Probable sphingosine-1-phosphate or sphingolipid transporter, Spinster homologue 1 (by similarity).

Plants

At5g65687 of Arabidopsis thaliana

 
2.A.1.49.6

Sphingosine-1-phosphate/dehydroshpingosine-1-P transport protein, Spinster 2. Involved in immune development and lymphocyte trafficing (Nijnik et al. 2012; Fukuhara et al. 2012). 

Animals

SPNS2 of Homo sapiens

 
2.A.1.49.7

Bacterial Spinster homologue; possible sphingosine-1-phosphate transporter (by similarity only).

Proteobacteria

Spinster homologue of Myxococcus xanthus

 
2.A.1.49.8

Bacterial spinster homologue.  Possible sphingosine-1-phosphate transporter (by similarity only).

Acidobacteria

Spinster homologue of Terriglobus saanensis

 
2.A.1.49.9

The cis, cis muconate transporter of 508 aas.

Animals (Insects)

 

MucK of Bombyx mori (Silk moth)

 


2.A.1.5 The Oligosaccharide:H+ Symporter (OHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.5.1

Lactose:H+ symporter, LacY. Transports lactose, melibiose and TMG. Crystal structures and modeling reveal the cytoplasmic open state and the periplasmic open state (PDB ID: 1PV7; Abramson et al., 2003Pendse et al., 2010). The membrane lipid composition determines the topology of LacY (Dowhan and Bogdanov, 2011). Smirnova et al. (2011) have provided evidence that the opening of the periplasmic cavity in LacY is the limiting step for sugar binding. Evidence for an alternating sites mechanism of transport has been summarized (Smirnova et al., 2011). Eames and Kortemme (2012) have shown that when considering expression of the lac operon, LacY function (H+ transport) and not protein production is the primary origin of cost fitness. Homology threading of several MFS porters based on the LacY 3-d structure has been reported (Kasho et al., 2006). The alternating-access mechanism has been suggested to arise from inverted topological repeats (Radestock and Forrest, 2011; Madej et al. 2012), but this proposal has been contested (Västermark and Saier 2014; Västermark et al. 2014). Mechanistic features of LacY have been summarized (Kaback 2015). 

Bacteria

LacY of E. coli

 
2.A.1.5.2

Raffinose:H+ symporter, RafB, can be mutated to transport maltose (Van Camp et al., 2007).

Bacteria

RafB of E. coli

 
2.A.1.5.3Sucrose:H+ symporter, CscB, also transports maltose (Peng et al. 2009).

Bacteria

CscB of E. coli

 
2.A.1.5.4Melibiose:H+ symporter, MelY (Shinnick et al., 2003). Transports melibiose and lactose, but not TMG (Tavoulari and Frillingos, 2007)BacteriaMelY of Enterobacter cloacae
 


2.A.1.50 The Proton Coupled Folate Transporter/Heme Carrier Protein (PCFT/HCP) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.50.1

The apical intestinal and choroid plexus proton-coupled, high affinity folate transporter, the hereditary folate malabsorption protein, PCFT/HCP1 (Shin et al. 2010).  Also reported to mediate heme-iron uptake from the gut lumen with duodenal epithelial cells (Shayeghi et al., 2005; Latunde-Dada et al., 2006; Subramanian et al., 2008, Shin et al., 2012b), but it shows a higher affinity for folate than heme) (Qiu et al., 2006). Responsible for folate uptake by choroid plexus epithelial cells (Wollack et al., 2007) and placenta (Yasuda et al., 2008). The rat orthologue (Q5EBA8) catalyzes H+-dependent folate uptake in the intestine (Inoue et al., 2008). Responsible for the rare autosomal recessive disorder, hereditary folate malabsorption (Zhao and Goldman, 2007). PCFT/ICP1, when mutated, is the cause of Hereditary Folate Malabsorption in humans (Qiu et al., 2006; Shin et al., 2012). Evidence for a 12 TMS topology with a renetrant look between TMSs 2 and 3 has been presented (Zhao et al., 2010; Qiu et al., 2006; Zhao et al., 2011; Wilson et al. 2014).  Downregulated in Chronic Kidney Disease (CKD) in heart, liver, and brain causing malabsorption (Bukhari et al., 2011). An IGXXG motif in TMS5 is important for folate binding and a GXXXG motif is involved in dimerization (Zhao et al., 2012). Inhibited by bicarbonate, bisulfite, nitrite and other anions (Zhao et al. 2013).  Its role in antifolate cancer chemotherapy has been reviewed (Matherly et al. 2014). TMSs 3 and 6 may provide critical interfaces for formation of hPCFT oligomers, facilitated by the GXXXG motifs in TMS2 and TMS4 (Wilson et al. 2015).  The extracellular gate has been identified (Zhao et al. 2016), and mechanistic aspects have been considered (Date et al. 2016).

Animals

SLC46A1 or PCFT of Homo sapiens

 
2.A.1.50.2Thymic stromal cotransporter, TSCOT (Kim et al. 2000)AnimalsSLC46A2 of Homo sapiens
 
2.A.1.50.3 solute carrier family 46, member 3AnimalsSLC46A3 of Homo sapiens
 
2.A.1.50.4

Multidrug efflux transporter, MET, of 507 aas and 12 TMSs (Chahine et al. 2012).  Exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance-associated protein (dMRP; CG6214; TC# 3.A.1.208.39) or an organic anion transporting polypeptide (OATP; CG3380; TC# 2.A.60.1.27), depending on the concentration of methotrexate in the diet.  MET probably does not export methotrexate (Chahine et al. 2012).

MET of Drosophila melanogaster (Fruit fly)

 


2.A.1.51 The Unknown Major Facilitator 7 (UMF7) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.51.1Putative permeaseBacteriaPutative transporter of Azoarcus sp. EbN1 (CAI06874)
 
2.A.1.51.2

YjiJ MFS porter, a member of the DUF2118 family in Pfam.

Bacteria

YjiJ of E. coli (D6IHN4)

 
2.A.1.51.3

MFS permease

Bacteria

MFS permease of Thermus thermophilus (F6DF77)

 
2.A.1.51.4

Uncharacterized MFS permease

Proteobacteria

UP of Pseudomonas aeruginosa

 


2.A.1.52 The Glycerophosphodiester Uptake (GlpU) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.52.1The putative permease, YihN (most like NarK and UhpC, 21% identity)BacteriaYihN of E. coli (P32135)
 
2.A.1.52.2

YqcE putative transporter

Bacteria

YqcE pf E. coli (F4TJX1)

 
2.A.1.52.3

MFS permease

Bacteria

MFS permease of Propionibacterium acnes

 
2.A.1.52.4

The glycerophosphodiester, glycerophosphocholine uptake porter, GlpU.  The cytoplasmic compound is hydrolyzed to α-glycerolphosphate and choline (Großhennig et al. 2013).

Tenericutes

GlpU of Mycoplasma pneumoniae

 


2.A.1.53 The Proteobacterial Intraphagosomal Amino Acid Transporter (Pht) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.53.1The threonine uptake permease, PhtA (Sauer et al., 2005) (required for maximal growth in macrophages and Acanthamoeba castellanii)Gamma proteobacteriaPhtA of Legionella pneumophila (YP_094583)
 
2.A.1.53.10

PhtF of 425 aas

PhtF of Legionella pneumophila

 
2.A.1.53.11

PhtG of 432 aas

PhtG of Legionella pneumophila

 
2.A.1.53.12

PhtH of 430 aas

PhtH of Legionella pneumophila

 
2.A.1.53.13

PhtI of 390 aas

PhtI of Legionella pneumophila

 
2.A.1.53.14

PhtK of 410 aas

PhtK of Legionella pneumophila

 
2.A.1.53.2

The valine uptake permease, PhtJ (required for maximal growth in macrophages and Acanthamoeba castellanii) (Chen et al., 2008)

Gamma proteobacteria

PhtJ of Legionella pneumophila (YP_095910)

 
2.A.1.53.3

The putative MFSD1 (SMAP4) transporter (463aas; 12 TMSs).  Expression is increased in mice by amino acid starvation and decreased by a high fat diet (Perland et al. 2016).

Animals

MFSDI of Homo sapiens (A6NID9)

 
2.A.1.53.4

Uncharacterized protein of 575 aas and 14 TMSs.

Rhodophyta

UP of Cyanidioschyzon merolae

 
2.A.1.53.5

Putative amino acid transporter of 478 aas and 12 TMSs, CG8602, isoform A.  May play a role in macrophage migration in the Drosophila embryo (Dr. Daria Siekhaus, personal communication).

SG8602A of Drosophila melanogaster (Fruit fly)

 
2.A.1.53.6

MFS uptake permease specific for pyrimidines, PhtC of 422 aas and 12 TMSs.  Together with PhtD (TC# 2.A.1.53.6), it contributes to protection of L. pneumophila from dTMP starvation, protects the cell from 5-fluorodeoxyuridine (FUdR) toxicity and is required for growth of L. pneumophila in macrophage (Fonseca et al. 2014).

PhtC of Legionella pneumophila

 
2.A.1.53.7

MFS uptake permease, probably specific for pyrimidines, PhtD of 427 aas and 12 TMSs.  Together with PhtC (TC# 2.A.1.53.6), it contributes to protection of L. pneumophila from dTMP starvatioin, protects the cell from 5-fluorodeoxyuridine (FUdR) toxicity and is required for growth of L. pneumophila in macrophage (Fonseca et al. 2014).

PhtD of Legionella pneumophila

 
2.A.1.53.8

PhtB of 431 aas

PhtB of Legionella pneumophila

 
2.A.1.53.9

PhtE of 430 aas

PhtE of Legionella pneumophila

 


2.A.1.54 The Unknown (Archaeal/Bacterial) Major Facilitator-9 (UMF9) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.54.1

The archaeal uptake permease, MMP0835 (function unknown) (31% I, 49% S with PhtA)

Archaea

MMP0835 of Methanococcus maripaludis (CAF30391)

 
2.A.1.54.2

UMF-9 homologue of 414 aa

Bacteria

UMF9 homologue of Geobacter sulfurreducens (Q747F2)

 
2.A.1.54.3

Functionally uncharacterized MFS porter of 414 aas

UP of Syntrophothermus lipocalidus

 


2.A.1.55 Unknown Major Facilitator-8 (UMF8) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.55.1

Uncharacterized MFS porter of 397 aas and 12 TMSs

UP of Halorubrum distributum

 
2.A.1.55.2

Uncharacterized protein of 390 aas

UP of Natrinema versiforme

 
2.A.1.55.3

Uncharacterized protein of 406 aas

UP of Haloterrigena salina

 
2.A.1.55.4

Putative phthalate porter of 377 aas

UP of Haloferax gibbonsii

 


2.A.1.56 The 1,3-Dihydroxybenzene Transporter (DHB-T) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.56.1The 1,3-dihydroxybenzene (resorcinol) uptake permease, MFS_1 (Darley et al., 2007)BacteriaMFS_1 of Azoarcus anaerobius (YP_285101)
 
2.A.1.56.2

Uncharacterized protein of 405 aas and 12 TMSs.

Proteobacteria

UP of Bradyrhizobium japonicum

 


2.A.1.57 The Ferripyochelin Transporter (FptX) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.57.1

The Ferripyochelin uptake permease, FptX (Michel et al., 2007).  Also transports N-acetylglucosamine anhydrous N-acetylmuramyl peptides and is called AmpP or AmpGh1 (Kong et al. 2010).  However, it does not play a role in the induction of β-lactam resistance (Zhang et al. 2010).

Bacteria

FptX or AmpP of Pseudomonas aeruginosa (Q9HWG8)

 
2.A.1.57.2

The ferric rhizbactin 1021 uptake porter, RhtX (Cuív et al. 2004).

Proteobacteria

RhtX of Sinorhizobium meliloti

 
2.A.1.57.3

Putative iron chelate transporter of 467 aas

Proteobacteria

Uncharacterized protein of E. coli

 
2.A.1.57.4

Siderophore transporter, RhtX/FptX family

Proteobacteria

Siderophore transporter of Myxococcus xanthus

 
2.A.1.57.5

The iron (Fe3+)·pyridine-2,6-bis(thiocarboxylic acid (PDTC)) uptake transporter, PdtE. Functions with the OMR, PdtK, 1.B.14.8.2 (most similar to 2.A.1.57.4) (Leach and Lewis 2006).

Bacteria

PdtE of Pseudomonas putida (ABC8353)

 
2.A.1.57.6Major facilitator superfamily domain-containing protein 3AnimalsMfsd3 of Rattus norvegicus
 


2.A.1.58 The N-Acetylglucosamine Transporter (NAG-T) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.58.1

The N-acetylglucosamine:H+ symporter, Ngt1 (Alvarez and Konopka, 2007)

Yeast

Ngt1 of Candida albicans (Q5A7S4)

 
2.A.1.58.2

May contribute to coordination of muscle contraction as regulatory subunit of a nonessential potassium channel complex.  Subunit structure:  May form a complex with sup-9 and sup-10 where unc-93 and sup-10 act as regulatory subunits of the two pore potassium channel sup-9.

 

Animals

Unc-93 of Caenorhabditis elegans (Q93380)

 
2.A.1.58.3

UNC93-like protein MFSD11 (Major facilitator superfamily domain-containing protein 11) (Protein ET)

Animals

MFSD11 of Mus musculus

 
2.A.1.58.4

MFS permease of 467 aas

Plants

MFS permease of Oryza sativa

 
2.A.1.58.5

Duf895 protein of 450 aas

Fungi

Duf895 protein of Verticillium albo-atrum

 
2.A.1.58.6

MFS permease of 425 aas

Slime molds

MFS permease of Dictyostellium discoideum

 
2.A.1.58.7

Unc-93b1 or Unc93b1 of 597 aas and 12 TMSs.  Plays a role in innate and adaptive immunity by regulating nucleotide-sensing Toll-like receptor (TLR) signaling. Required for the transport of a subset of TLRs (including TLR3, TLR7 and TLR9) from the endoplasmic reticulum to endolysosomes where they can engage pathogen nucleotides and activate signaling cascades. May play a role in autoreactive B-cells removal (Isnardi et al. 2008).  Induces apoptotic cell death and is cleaved by host and viral proteases (Harris and Coyne 2015).

Unc93b1 of Homo sapiens

 


2.A.1.59 Unidentified Major Facilitator-10 (UMF10) Family (mostly from Archaea but some from bacteria)


Examples:

TC#NameOrganismal TypeExample
2.A.1.59.1

UMF10a of unknown function, (COG2270).

Archaea

UMF10a of Methanococcus aeolicus (A6UVW2)

 
2.A.1.59.2

UMF10b (in an operon with a sensor kinase/response regulator pair and an 8 TMS rhomboid protease)

Bacteria

UMF10b of Nostoc punctiforme (B2JBG5)

 
2.A.1.59.3

MFS permease, AF1541

Archaea

AF1541 of Archaeoglobus fulgidus (O28731)

 
2.A.1.59.4

MFS permease, LepA

Bacteria

LepA of Hydrogenivirga sp.128-5-R1-1 (A8UT57)

 


2.A.1.6 The Metabolite:H+ Symporter (MHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.6.1Citrate:H+ symporterBacteriaCitA of Klebsiella pneumoniae
 
2.A.1.6.10

Inner membrane metabolite transport protein YhjE

Bacteria

YhjE of Escherichia coli

 
2.A.1.6.11

Acetate/haloacid transporter, Dehp2, with a possible atypical topology (Tse et al. 2009).  Transports acetate, chloroacetate, bromoacetate, 2-chloropropionate, and possibly, with low affinity, glycolate, lactate and pyruvate (based on weak inhibition results).  Inducible by chloroacetate (Su and Tsang 2012).  This protein is 79% identical to its paralogue, Deh4p (TC# 2.A.1.6.8) which differs in that it shows lower apparent affinity for 2-chloropropionate.

Bacteria

Dehp2 of Burkholderia caribensis (formerly sp. MBA4)

 
2.A.1.6.12

The putative thiazole transporter, ThiU. Regulatyed by TPP riboswitch (Rodionov et al. 2002)

Pasteurellales

ThiU of Haemophilus influenzae (P44699)

 
2.A.1.6.13

Acetate/monochloroacetate permease, Deh4p, of 468 aas and 12 TMSs.  Transports various carboxylates.  Dehalococcoides mccartyi degrades haloacids (Su et al. 2016).

Deh4p of Dehalococcoides mccartyi

 
2.A.1.6.2

α-Ketoglutarate (oxoglutarate):H+ symporter (Seol and Shatkin 1992; Seol and Shatkin 1992).  May also export arabinose but not xylose (Koita and Rao 2012).

Bacteria

KgtP of E. coli (P0AEX3)

 
2.A.1.6.3

Dicarboxylate:H+ symporter.  Transports and serves as a chemoreceptor for β-ketoadipate (Karimian and Ornston 1981).

Bacteria

PcaT of Pseudomonas putida

 
2.A.1.6.4

(Proline/glycine-betaine):(H+/Na+) symporter, ProP (also transports taurine, ectoine, pipecolate, proline-betaine, N,N-dimethylglycine, carnitine, and 1-carboxymethyl-pyridinium) (subject to osmotic activation). Transmembrane helix I and periplasmic loop 1 are involved in osmosensing and osmoprotectant transport (Keates et al., 2010).

Bacteria

ProP of E. coli (P0C0L7)

 
2.A.1.6.54-Methyl-o-phthalate:H+ symporterBacteriaMopB of Burkholderia cepacia
 
2.A.1.6.6Shikimate:H+ symporterBacteriaShiA of E. coli
 
2.A.1.6.7The citrate/tricarballylate:H+ symporter (CitA or TcuC); probably orthologous to 2.A.1.6.1 (Lewis et al., 2004)BacteriaTcuC of Salmonella enterica serovar Typhimurium LT2 (P0A2G3)
 
2.A.1.6.8

The acetate/monochloroacetate (haloacid) permease, Deh4p (Km = 5.5 mμM for acetate; 9 mμM for monochloroacetate) (Yu et al., 2007; Su and Tsang 2012).

Bacteria

Deh4 of Burkholderia cepacia or sp. MBA4 (Q7X4L6)

 
2.A.1.6.9

YdfJ. Can function as an inward rectifying K+ channel when expressed in animal cells as measured by whole cell patch clamping. Blocked by barium and protopine (Tang et al., 2011).

Bacteria

YdfJ of E. coli (P77228)

 


2.A.1.60 The Rhizopine-related MocC (MocC) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.60.1The rhizopine related transporter, MocC (could either transport a precursor for rhizopine biosynthesis into bacteroids or the finished product from the bacteroids) (Murphy et al., 1993)BacteriaMocC of Sinorhizobium meliloti (Q07609)
 
2.A.1.60.2

Inner membrane protein YbjJ

Bacteria

YbjJ of Escherichia coli

 
2.A.1.60.3

The multidrug (quinolone; tetarcycline) resistance pump, TcrA (Chang et al. 2011).

Bacteria

TcrA of Stenotrophomonas maltophilia (F2WVP9)

 


2.A.1.61 The Microcin C51 Immunity Protein (MccC) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.61.1The MccC microcin C51 immunity protein (exports the peptide-nucleotide 'Trojan horse' antibiotic) (Fomenko et al., 2003; Kazakov et al., 2007)BacteriaMccC of E. coli (Q83Y57)
 


2.A.1.62 The Unidentified Major Facilitator-11 (UMF11) Family

Possibly involved in transport of amino acids and their derivatives.


Examples:

TC#NameOrganismal TypeExample
2.A.1.62.1

The UMF11 homologue

Bacteria

UMF11 of Staphylococcus aureus (A8YZ14)

 
2.A.1.62.2

Putative Macrolide efflux pump (P-MEP), possibly involved in transport of amino acids and their derivatives.

 

Bacteria

P-MEP of Fusobacterium sp. 7_1 (C3WVU9)

 
2.A.1.62.3

UMF11 (links UMF11 with UMF13)

Bacteria

UMF11 of Bacillus clausii (Q5WGH2)

 


2.A.1.63 The Unidentified Major Facilitator-12 (UMF12) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.63.1

The UMF12 protein 

Archaea

UMF12 of Methanosarcina barkeri (Q467Y6)

 
2.A.1.63.2

UMF12 Possible amino acid exporter

Archaea

UMF12 of Methanosarcina mazei (Q8PRW9)

 
2.A.1.63.3

Possible nucleotide or oligonucleotide uptake porter, UMF12

Bacteria

UMF12 of Deinococcus radiodurans (Q9RXM0)

 

 

 
2.A.1.63.4

MFS carrier

Eukaryotes

MFS carrier of Saccharomyces cerevisiae K7 (P47159)

 


2.A.1.64 The Unidentified Major Facilitator-13 (UMF13) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.64.1

The UMF13 protein

Firmicutes

UMF13 of Streptococcus thermophilus (Q5M4L1)

 
2.A.1.64.2Uncharacterized protein RP255BacteriaRP255 of Rickettsia prowazekii
 
2.A.1.64.3

Uncharacterized protein of 611 aas

UP of Spiroplasma diminutum

 


2.A.1.65 The Unidentified Major Facilitator-14 (UMF14) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.65.1The putative MFS carrier, Sugar Baby (Sug, isoform D); has a hydrophilic domain between TMSs 3 and 4. Overexpression causes an increased lifespan by 17%.

Animals

Sugar Baby of Drosophila melanogaster (Q7KUF9)

 
2.A.1.65.10Major facilitator superfamily domain-containing protein 6-likeAnimalsMFSD6L of Homo sapiens
 
2.A.1.65.11

Duplicated MFS permease (901 amino acyl residues; ~24 TMSs)

Algae

Duplicated MFS permease of Chlamydomonas reinhardtii

 
2.A.1.65.2Unknown MFS homologue; e-6 with 2.A.1.5 family members; has a hydrophilic domain between TMSs 3 and 4.

Animals

UMF14 of Culex quinquefasciatus (B0W435)

 
2.A.1.65.3

Unknown MFS homologue UMF14 ( 833 aas, 12 TMSs in a 3+9 arrangement )

Animals

UMF14 of Anopheles gambiae (Q7Q0Z9)

 
2.A.1.65.4

Uncharacterized protein of 474 aas

Animals

UP of Nematostella vectensis (Starlet sea anemone)

 
2.A.1.65.5

MFS porter

Animals

MFS porter of Daphnia pulex (E9I268)

 
2.A.1.65.6

Macrophage MHC Class I receptor 2, Mmr2 or MFSD6

Animals

Mmr2 of Mus musculus (Q8CBH5)

 
2.A.1.65.7

MFS porter

Plants

MFS porter of Chlorella variablis (E1ZG13)

 
2.A.1.65.8

MFS permease

Bacteria

MFS permease of Thermoanaerobacter tengcongensis (Q8R7B7)

 
2.A.1.65.9Maltose permease

Bacteria

MalA of Geobacillus stearothermophilus

 


2.A.1.66 The Unidentified Major Facilitator-15 (UMF15) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.66.1

MFS permease of unknown function (First half resembles 2.A.1.3.7 (e-11) and 2.A.1.15.3 (e-8)). Very likely to be a galactoside/galactose transporter; encoded within a gene cluster with β-galactosidase and galactose metabolic genes.

Archaea

MFS permease of Thermofilum pendens (A1RW34)

 
2.A.1.66.2

Putative 4-hydroxybenzoate uptake transporter, MFS_1 (in an operon with 2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase of the methionine salvage pathway), using S-adenyl methionine (SAM) as substrate. May transport SAM.

Bacteria

MFS1 of Leptospira interrogans (Q8F7L4)

 
2.A.1.66.3

UMF15 Homologue

Eukaryotes (Stramenophiles)

UMF15 homologue of Thalassiosira pseudonana (B8BU21)

 

 
2.A.1.66.4

MFS transporter of 531 aas.  Present in the membrane of the organelle called the rhoptries which is involved in host invasion and hijacking host cell functions (Peter Bradley, personal communication).

Alveolata

MFS porter of Toxoplasma gondii

 
2.A.1.66.5

MFS transporter of 428 aas.  Present in the membrane of the organelle called the rhoptries which is involved in host invasion and hijacking host cell functions (Peter Bradley, personal communication).

Alveolata

Porter of Toxoplasma gondii

 
2.A.1.66.6

Uncharacterized protein of 646 aas and 12 TMSs

UP of Chlorella variabilis (Green alga)

 


2.A.1.67 The Unidentified Major Facilitator-16 (UMF16) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.67.1

MFS permease of unknown function (second half distantly resembles the first half of 2.A.1.41.3/e value of 0.001)

Bacteria

UMF16 of Kribbella flavida (D2PP09)

 
2.A.1.67.2

MFS porter

Bacteria

MFS porter of Arthrobacter aurescens (A1R564)

 
2.A.1.67.3

MFS porter

Bacteria

MFS porter of Erwinia pyrifoliae (D0FNI7)

 
2.A.1.67.4

MFS porter of 402 aas and 12 TMSs.

Bacteria

MFS porter of Propionibacterium acnes (D1YEI1)

 


2.A.1.68 The Glucose Transporter (GT) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.68.1

The glucose transporter, OEOE_1574; does not transport fructose (Kim et al., 2011).

Firmicutes

OEOE_1574 of Oenococcus onei (Q04DP6)

 
2.A.1.68.2

MFS porter of 409 aas

MFS porter of Methanofollis ethanolicus

 
2.A.1.68.3

MFS porter

MFS porter of Blautia producta

 


2.A.1.69 Unidentified Major Facilitator-17 (UMF17) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.69.1

The UMF17A porter

Bacteria

UMF17A porter of Streptomyces coelicolor (Q9KZY0)

 
2.A.1.69.2

MFS permease of 438 aas

MPF porter of Geodermatophilus obscurus

 
2.A.1.69.3

MFS porter of 438 aas

MFS porter of Geodermatophilus obscurus

 


2.A.1.7 The Fucose: H+ Symporter (FHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.7.1

L-Fucose:H+ symporter. The x-ray structure (3.1Å resolution) with an outward open, amphipathic cavity has been solved. Asp46 and Glu135 can undergo cycles of protonation (Dang et al., 2010). 

Bacteria

FucP of E. coli

 
2.A.1.7.10

The putative glucose porter, GlcP (Rodionov et al., 2010).

Proteobacteria

GlcP of Shewanella amazonensis (A1S5F4)

 
2.A.1.7.11

The putative mannose porter, ManPl (Rodionov et al., 2010).

Proteobacteria

ManPl of Shewanella amazonensis (A1S297)

 
2.A.1.7.12

The putative trehalose porter, TreT (Rodionov et al., 2010)

Proteobacteria

TreT of Shewanella frigidimarina (Q07XD1)

 
2.A.1.7.13Bypass of stop codon protein 6FungiBSC6 of Saccharomyces cerevisiae S288c
 
2.A.1.7.14

Protein TsgA

Bacteria

TgsA of E. coli

 
2.A.1.7.15Major facilitator superfamily domain-containing protein 4-AAnimals

Mfsd4a of Danio rerio

 
2.A.1.7.16

The putative mannose porter, ManP (Rodionov D.A., personal communication). Regulated by mannose regulon ManR.

Bacteroidetes

ManP (Q8A5Y0) of Bacteroides thetaiotaomicron

 
2.A.1.7.17

The putative fructose porter, FruP (Rodionov D.A., personal communication). Regulated by fructose oligosaccharide utilization regulon.

Bacteroidetes

FruP (Q8A6W8) of Bacteroides thetaiotaomicron

 
2.A.1.7.18

The putative N-acetylglucosamine porter, NagP (Rodionov D.A., personal communication). Regulated by heparin utilization regulon.

Bacteroidetes

NagP (Q89YS8) of Bacteroides thetaiotaomicron

 
2.A.1.7.19

Probable glucose transporter encoded by a gene sandwiched in between two genes encoding a glucose 1-dehydrogenase and a gluconolactonase.

Chlamydiae

Glucose permease of Parachlamydia acanthamoebae

 
2.A.1.7.2Glucose/galactose porterBacteriaGgp of Brucella abortus (P0C105)
 
2.A.1.7.20

Uncharacterized MFS protein of 392 aas and 12 TMSs.

UMFS of Bdellovibrio exovorus

 
2.A.1.7.21

Uncharacterized protein of the MFS of 505 aas and 12 TMSs

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 
2.A.1.7.22

Uncharacterized protein of 494 aas and 12 TMSs.

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 
2.A.1.7.23

Na+-dependent glucose transporter 1, Mfsd4b, of 491 aas and 12  TMSs.  May also serve as a channels for urea in the inner medulla of the kidney.

Mfsd4b of Xenopus laevis (African clawed frog)

 
2.A.1.7.3

Glucose/Mannose/Xylose: H+ symporter (Paulsen et al., 1998; G.Gosset, personal communication).

Bacteria

GlcP of Bacillus subtilis

 
2.A.1.7.4Rat kidney Na+-dependent glucose (methyl α-glucoside) transporter, NaGLT1 (glucose:Na+:Na+=1:1) (Horiba et al., 2003)AnimalsNaGLT1 of Rattus norvegicus (BAC57446)
 
2.A.1.7.5

2-Deoxy-D-ribose porter, DeoP (Christensen et al., 2003).  Plays a role in colonization of the mouse intestine (Martinez-Jéhanne et al. 2009).

Bacteria

DeoP of Salmonella typhimurium LT-2 (gi 16767076)

 
2.A.1.7.6

Sucrose permease, ScrT (Rodionov et al., 2010)

Bacteria

ScrT of Shewanella frigidimarina (ABI73814)

 
2.A.1.7.7The Na+-dependent sugar transporter, HP1174 (transports glucose, galactose, mannose and 2-deoxyglucose (Psakis et al. 2009)). (most similar to 2.A.1.7.2; 49% identity)

Bacteria

HP1174 of Helicobacter pylori (O25788)

 
2.A.1.7.8

N-acetylglucosamine porter, NagP (Rodionov et al. 2010).

Proteobacteria

NagP of Shewanella oneidensis (Q8EBL0)

 
2.A.1.7.9

The putative N-acetylgalactosamine porter, AgaP (Leyn et al. 2012).

Proteobacteria

AgaP of Shewanella amazonensis (A1S4V0)

 


2.A.1.70 Unidentified Major Facilitaor-18 (UMF18) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.70.1

UMF18A

Bacteria

UMF18A of Streptomyces coelicolor (Q9L223)

 
2.A.1.70.2

UMF18B 

Bacteria

UMF18B of Saccharomonospora azurea (G4JJZ0)

 
2.A.1.70.3

UMF18C

Bacteria

UMF18C of Salinispora tropica (A4X2L1)

 


2.A.1.71 The Valanimycin-resistance (Val-R) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.71.1

The Valanimycin-resistance determinant, VlmF (probably a valanimycin:H  antiporter (Ma et al., 2000))

Bacteria

VlmF of Streptomyces viridifaciens (Q9LA76)

 
2.A.1.71.2

The UMF19a porter

Bacteria

UMF19a porter of Streptomyces coelicolor (Q93J85)

 
2.A.1.71.3

Uncharacterized protein of 375 aas and 11 TMSs

UP of Patulibacter americanus

 


2.A.1.72 The Unidentified Major Facilitator-20 (UMF20) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.72.1

The UMF20A porter

Bacteria

UMF20A of Streptomyces coelicolor (Q9RL01)

 
2.A.1.72.2

MFS_1 of 429 aas

MFS_1 of Propionimicrobium lymphophilum

 
2.A.1.72.3

MFS_1 of 390 aas

MFS_1 of Mesorhizobium loti

 


2.A.1.73 The Unidentified Major Facilitator-21 (UMF21) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.73.1

The UMF21A porter

Bacteria

UMF21A porter of Streptomyces coelicolor (Q9L102)

 
2.A.1.73.2

MFS permease of 397 aas

MFS permease of Actinoplanes friuliensis

 
2.A.1.73.3

MFS_1, MilK of 442 aas.

MilK of Streptomyces rimofaciens

 


2.A.1.74 The Unidentified Major Facilitator-22 (UMF22) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.74.1

UMF22a porter 

Bacteria

UMF22 porter of Streptomyces coelicolor (Q9S243)

 
2.A.1.74.2

MFS_1 of 408 aas

MFS_1 of Bacillus marmarensis

 
2.A.1.74.3

MFS_1 of 389 aas

MFS_1 of Variovorax paradoxus

 
2.A.1.74.4

MFS_1 of 401 aas

MFS_1 of Marinobacter santoriniensis

 


2.A.1.75 The Unidentified Major Faciilitator-23 (UMF23) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.75.1

Probable transporter MCH1 (Monocarboxylate transporter homologue 1)

Fungi

MCH1 of Saccharomyces cerevisiae

 
2.A.1.75.2

Fungi

Mct of Coccidioides posadasii (E9CYW5)

 
2.A.1.75.3

Uncharacterized major facilitator, UMF23C

Yeast

UMF23C of Candida albicans

 
2.A.1.75.4

Uncharacterized major facilitator UMF23D

Amoeba

UMF23D of Naegleria gruberi

 
2.A.1.75.5

UMF23 permease of 572 aa

Plants

UMF23 of Arabidopsis thaliana

 
2.A.1.75.6

Uncharacterized protein of 591 aas and 12 TMSs

UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)

 


2.A.1.76 The Uncharacterized Major Facilitator 24 Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.76.1

Uncharacterized protein Mhp246

Bacteria

Mhp246 of Mycoplasma hyopneumoniae

 
2.A.1.76.2

Uncharacterized Mycoplama MFS carrier, UMF24B

Bacteria

UMF24B of Mycoplasma capricolum

 
2.A.1.76.3

Uncharacterized MFS carrier, UMF24C

Bacteria

UMF24C of Lactobacillus salivarius

 
2.A.1.76.4

MFS carrier of 525 aas and 12 TMSs.

MFS porter of Mycoplasma galisepticum

 


2.A.1.77 Uncharacterized Major Facilitator-25 (UMF25) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.77.1

Unknown Major Facilitator UMF25a

Bacteria

UMF25a of Rhodopirellula baltica

 
2.A.1.77.2

Unknown Major Facilitator, UMF25b

Bacteria

UMF25b of Planctomyces limnophilus

 


2.A.1.78 The Uncharacterized Major Facilitator-26 (UMF26) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.78.1

UMF26a of 416 aas and 12 TMSs.  Encoded by a gene that is adjacent to two ATP hydrolyzing subunits homologous to ABC proteins of the peptide transporters of TC family 3.A.1.5.

Chlamydiae

UMF26a of Parachlamydia acanthaemoebae (F8KXQ8)

 
2.A.1.78.2

UMF26b of 419 aas and 12 TMSs

Chlamydiae

UMF26b of Simkania negevensis (F8L9E4)

 
2.A.1.78.3

UMF26c of 457 aas and 12 TMSs

Planctomyces

UMF26c of Phycisphaera mikurensis (I0II84)

 
2.A.1.78.4

UMF26d of 413 aas and 12 TMSs

Verrucomicrobia

UMF26d of Verrucomicrobiae bacterium (B5JEI3)

 


2.A.1.79 The Uncharacterized Major Facilitator-27 (UMF27) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.79.1

MFS permease of 485 aas

Rhodophyta

MFS permease of Cyanidioschyzon merolae

 
2.A.1.79.2

Uncharacterized MFS proter of 724 aas and 12 TMSs with a C-terminal hydrophilic extension.

UP of Chondrus crispus (Carrageen Irish moss) (Polymorpha crispa)

 


2.A.1.8 The Nitrate/Nitrite Porter (NNP) family


Examples:

TC#NameOrganismal TypeExample
2.A.1.8.1

Nitrate/H+ symporter (K1);Nitrate/nitrite antiporter (K2).  The 3-d structure is available revealing a positively charged pathway for nitrate/nitrite lined with arginine residues with no apparent proton pathway suggesting exchange transport is the primary or sole mechanism.  The pathway is between the two halves of the protein and a rocker switch mechanism was proposed (Zheng et al. 2013).  In an in vitro reconstituted system, NarK appeared to be a nitrate/nitrite antiporter.  High-resolution crystal structures in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states have been solved (Fukuda et al. 2015).

Proteobacteria

NarK (NarK1-K2) of E. coli

 
2.A.1.8.10

NO3-/NO2- transporter (NO3- uptake permease; NO2- exporter) (probable NO3-/NO2- antiporter) (stress-induced; Clegg et al., 2006; Jia et al. 2009)

Bacteria

NarU of E. coli

 
2.A.1.8.11The 24 TMS, 2 domain, NarK1-NarK2 porter (NarK1 = a NO3-/H+ symporter; NarK2 = a NO3-/NO2- antiporter).  NarK1 is a nitrate/proton symporter with high affinity for nitrate while NarK2 is a nitrate/nitrite antiporter with lower affinity for nitrate (Goddard et al., 2008).  Each transporter requires two conserved arginine residues for activity.  A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains (Goddard et al., 2008).

Bacteria

NarK1/NarK2 of Roseobacter denitrificans (Q166T6)

 
2.A.1.8.12

The root cortical and epidermal cell, high affinity, plasma membrane, NO3- uptake transporter, NRT2.1 (Wirth et al., 2007). Also functions in nitrate sensing and signaling (Miller et al., 2007; Girin et al., 2010). Activity only occurs when NRT2.1 is complexed with NAR2.1 (WR3; 8.A.20.1.1) in a 2:2 tetrameric complex (Yong et al., 2010). NAR2.1 has an N-terminal and a C-terminal TMS and has been annotated as a calcineurin-like phosphoesterase family member (Yong et al., 2010).  Ntr transporters may also play a role in gaseous NO2 uptake by leaves (Hu et al. 2014).  The Medicago truncatula orthologue has been characterized (Pellizzaro et al. 2014).

Plants

NRT2.1 of Arabidopsis thaliana (O82811)

 
2.A.1.8.13

High affinity nitrate/nitrite antiporter and uptake porter, NrtB (Unkles et al., 1991; 2011; Wang et al. 2008).

Fungi

NrtB of Emericella (Aspergillus) nidulans (Q8X193)

 
2.A.1.8.14

Nitrate/nitrite uptake porter, NapA (Wang et al., 2000)

Cyanobacteria

NapA of Trichodesmium sp. WH 9601 (Q9RA38)

 
2.A.1.8.15

Probable nitrate transporter NarT

Bacteria

NarT of Staphylococcus carnosus

 
2.A.1.8.16

MFS porter of 430 aas

Proteobacteria

MFS porter of Rhizobium loti

 
2.A.1.8.2Nitrate uptake porterBacteriaNasA of Bacillus subtilis
 
2.A.1.8.3Nitrate/nitrite uptake porterBacteriaNrtP of Synechococcus PCC7002
 
2.A.1.8.4Nitrate transporterDiatomsNitrate porter of Cylindrotheca fusiformis
 
2.A.1.8.5

Nitrate/nitrite transporter/antiporter, CrnA/NrtA (Unkles et al., 1991; Beckham et al. 2010). The nitrate signature sequences (NS1 and NS2) in TMSs 5 and 11 and arg residues in TMSs 2 and 8 may influence substrate binding (Unkles et al., 2012).

Fungi

CrnA of Emericella nidulans

 
2.A.1.8.6Nitrate transporterAlgaeNitrate porter of Chlamydomonas reinhardtii
 
2.A.1.8.7

High affinity Nitrate/nitrite uptake transporter, Nar4.

Algae

Nar4 of Chlamydomonas reinhardtii (A8J4P3) 

 
2.A.1.8.8NO2- extrusion, NO3-/NO2- exchange permease, NarK1BacteriaNarK1 of Thermus thermophilus HB8
 
2.A.1.8.9NO2- extrusion, NO3-/NO2- exchange permease, NarK2BacteriaNarK2 of Thermus thermophilus HB8
 


2.A.1.80 The Uncharacterized Major Facilitator-28 (UMF28) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.80.1

Uncharacterized MFS permease of 515 aas

Rhodophyta

Putative peremease of Galdieria sulphuraria

 
2.A.1.80.2

MFS_1 of 395 aas

MFS1 of Plesiocystis pacifica

 
2.A.1.80.3

MFS_1 of 398 aas.

MFS_1 of Desulfobulbus propionicus

 
2.A.1.80.4

MFS transporter of 410 aas.

MFS1 of Octadecabacter antarcticus

 
2.A.1.80.5

MFS_1 of 401 aas

MFS_1 of Crocosphaera watsonii

 


2.A.1.81 The Copper Uptake Porter (Cu-UP)


Examples:

TC#NameOrganismal TypeExample
2.A.1.81.1

The copper (Cu2+) uptake porter, CcoA of 405 aas and 12 TMSs. CcoA-mediated Cu2+ import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu2+-binding domain (Khalfaoui-Hassani et al. 2016).

Proteobacteria

CcoA of Rhodobacter capsulatus

 
2.A.1.81.2

Putative copper uptake porter, MFS_1 of 420 aas

Chloroflexi

MFS_1 of Chloroflexus aggregans

 
2.A.1.81.3

MFS permease of 403 aas.

Actinobacteria

MFSA permease of Corynebacterium glutamicum

 
2.A.1.81.4

MFS porter of 350 aas

Thaumarchaeota (Archaea)

MFS porter of Candidatus Caldiarchaeum subterraneum

 
2.A.1.81.5

Riboflavin uptake transporter of 398 aas and 12 TMSs, RfnT (Gutiérrez-Preciado et al. 2015).

RfnT of Ochrobactrum anthropi

 


2.A.1.82 The Plant Copper Uptake Porter (Pl-Cu-UP)


Examples:

TC#NameOrganismal TypeExample
2.A.1.82.1

The barley copper uptake porter, CT-1 of 749 aas; nearly identical to the wheat orthologue (Li et al. 2013).

Plants

CT-1 of Hordeum vulgare (F2CRE4)

 
2.A.1.82.2

The putative copper uptake porter, CT1, of 825 aas. The C-terminal domain of 300 aas is a DUF572 (COG5134) domain.

Plants

CT1 of Ostreococcus tauri (Q010B9)

 
2.A.1.82.3

Synaptic vesicle 2-related protein (SV2-related protein), SVOP.  This protein localizes to neurotransmitter-containing vesicles and has a nucleotide binding site (Yao and Bajjalieh 2009). ATP, GTP and NAD show binding affinities with the highest affinity for NAD, in contrast to SV2 (TC# 2.A.1.22.1), which binds both NAD and ATP with equal affinity.

Animals

Sv2p of Mus musculus

 
2.A.1.82.4

Niacin uptake porter NiaP (Jeanguenin et al. 2012)

Bacteria

YceI of Bacillus subtilis (O34691)

 
2.A.1.82.5

Uncharacterized MFS protein of 460 aas

Plants

UP of Volvox carteri (Green alga)

 
Examples:

TC#NameOrganismal TypeExample
2.A.1.83.1

MFS porter; possibly a 1-arseno-3-phosphoglycerate exporter.  Present in an operon concerned with arsenic resistance, possibly encoding the enzymes and transporters of a new pathway of arsenic biotransformation.  The adjacent gene encodes a 3-phosphoglycerate dehydrogenase homologue that could form the presumed substrate of the MFS porter which could be expelled from the cell (Barry Rosen personal communication.

Proteobacteria

MFS porter of Aliivibrio (Vibrio) salmonicida

 
2.A.1.83.2

Putative 1-arseno-3-phosphoglycerate exporter, MFS-83.

Proteobacteria

MFS-83 of Ferrimonas balearica

 
2.A.1.83.3

Putative 1-arseno-3-phosphoglycerate exporter of 460 aas (see 2.A.1.83.1).

Stramenopiles

MFS-83 of Ectocarpus siliculosus (Brown alga

 
Examples:

TC#NameOrganismal TypeExample
2.A.1.84.1

Putative MFS permease of 467 aas and 12 TMSs

Spirochaetes

MFS permease of Treponema denticola

 
2.A.1.84.2

Uncharacterized protein of 435 aas and 12 TMSs.

Actinobacteria

UP of Slackia heliotrinireducens (Peptococcus heliotrinreducens)

 
2.A.1.84.3

Uncharacterized protein

Actinobacteria

UP of Streptosporangium roseum

 
Examples:

TC#NameOrganismal TypeExample
2.A.1.85.1

Uncharacterized protein of 541 aas and 12 TMSs

UP of Isoptericola variabilis

 
2.A.1.85.2

Putative 12 TMS permease of 534 aas, HalU (Besse et al. 2015).

HalU of Halalkalicoccus jeotgali

 
2.A.1.85.3

Putative MFS permease

MFS permease of Actinoplanes friuliensis

 
2.A.1.85.4

Putative permease of 510 aas

PP of Halobacterium salinarum (Halobacterium halobium)

 
Examples:

TC#NameOrganismal TypeExample


2.A.1.9 The Phosphate: H+ Symporter (PHS) Family


Examples:

TC#NameOrganismal TypeExample
2.A.1.9.1

High affinity Pi uptake porter, SUL1, Sul-1, SFP2 of 859 aas and 10 TMSs. (also functions in Mn2+ homeostasis); may transport a phosphate·Mn2+ complex (Jensen et al., 2003). Also takes up selenite (Lazard et al., 2010).  May be a "transceptor", combining transport and receptor functions (Diallinas 2017).

 

Yeast

Pho84 of Saccharomyces cerevisiae (P25297)

 
2.A.1.9.10

High affinity (25 mμM) phosphate uptake porter, PiPT (Yadav et al. 2010).  The high resolution structure has been determined by x-ray crystallography (Pedersen et al. 2013).

Fungi

PiPT of Piriformospora indica

 
2.A.1.9.11

Phosphate transporter, PT, of 543 aas and 12 TMSs. It has a micormolar Km for phosphate uptake, is found in the plasma membrane and is induced by low medium phosphate concentrations (Wang et al. 2014).

Fungi

PT in the ectomycorrhizal fungus, Boletus edulis

 
2.A.1.9.12

Phosphate transporter and receptor (transceptor) of 543 aas and 12 TMSs.  Important for signalling and uptake of phosphate.  The majority of terrestrial vascular plants can form mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Xie et al. 2016 reported a high-affinity phosphate transporter GigmPT that is required for AM symbiosis. GigmPT functions as a phosphate transceptor for the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade.

PT of Gigaspora margarita

 
2.A.1.9.13

High affinity sulfate transporter, SUL-2/SUL2/SEL2, of 893 aas and 10 - 12 TMSs. May be a "transceptor", combining transport and receptor functions (Diallinas 2017).

SUL-2 of Saccharomyces cerevisiae

 
2.A.1.9.2

Pi uptake porter, Pho84

Fungi

Pho-84 of Neurospora crassa (Q7RVX9)

 
2.A.1.9.3

Pi uptake porter. Four close paralogues in Medicago truncatula (PT1-4), all localized to roots, show differing affinities for phosphate (Liu et al. 2008).

Plants

PT1 of Solanum tuberosum

 
2.A.1.9.4

Pht1;2(1;4) (PT2), a low affinity Pi uptake transporter, functioning throughout the plant (Ai et al., 2009) (76% identical to 2.A.1.9.3).

Plants

Pht1;2(1;4) of Oryza sativa (Q01MW8)

 
2.A.1.9.5

Pht1;6 (PT6), a high affinity Pi uptake transporter, functioning thoughout the plant (Ai et al., 2009) (75% identical to 2.A.1.9.3)

Plants

Pht1;6 (PT6) of Oryza sativa (Q8H6H0)

 
2.A.1.9.6

Phosphate transporter-5, PT5. Catalyzes phosphate:H+ symport (Liu et al., 2008).

Plants

PT5 of Medicago truncatula (A5H2U6)

 
2.A.1.9.7

Organic phosphate (glycerophosphoinositol and glycerophosphocholine, the products of phospholipase-B mediated deacylation of phosphatidylinositol and phosphatidylcholine, respectively) transport protein GIT1 (Almaguer et al. 2006).

Fungi

GIT1 of Saccharomyces cerevisiae

 
2.A.1.9.8Putative inorganic phosphate transporter C23D3.12YeastSPAC23D3.12 of Schizosaccharomyces pombe
 
2.A.1.9.9

Inorganic phosphate transporter 1-1 (AtPht1;1) (H(+)/Pi cotransporter).  A Brassica napus homologue, Pht1;4, catalyzes phosphate uptake and affects root architecture (Ren et al. 2014).

Plants

PHT1-1 of Arabidopsis thaliana