TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.3.7.1
K+-ATPase (uptake), KdpFABC. (KdpA is homologous to other K+ transporters such as KcsA (1.A.1.1.1), KtrB (2.A.38.4.2 and 2.A.38.4.3), and HKT (2.A.38.3.1 and 2.A.38.3.2); KdpB is homologous to P-ATPase α-subunits; KdpC and KdpF may facilitate complex assembly and stabilize the complex (Bramkamp et al., 2007; Haupt et al., 2005; Greie and Altendorf, 2007; Irzik et al., 2011). The KdpFABC acts as a functional and structural dimer with the two KdpB subunits in direct contact, but the enzyme can dissociate to the monomer (Heitkamp et al., 2008). KdpF is part of and stabilizes the KdpABC complex (Gassel et al., 1999).  Transcription of the kdp operon is activated by the KdpDE sensor kinase/response regulator pair, and unphosphorylated IIANtr of the PTS (TC# 4.A) binds KdpD to stimulate its activity, thereby enhancing kdp operon expression (Lüttmann et al. 2009, Lüttmann et al. 2015). Transcriptional regulation of the Pseudomonas putida kdpFABC operon by the KdpDE sensor kinase/response regulator by direct interaction of IIANtr of the PTS with KdpD has also been studied (Wolf et al. 2015). The 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB has been solved (Huang et al. 2017). The structure reveals two structural elements that appear to mediate the coupling between these two subunits: a protein-embedded tunnel runs between these potassium and water sites, and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. A mechanism that repurposes protein channel architecture for active transport across biomembranes was proposed (Huang et al. 2017). The cytoplasmic C-terminal domain of KdpD functions as a K+ sensor (Rothenbücher et al. 2006). Serine phosphorylated KdpB is trapped in a conformation where the ion-binding site is hydrated via an intracellular pathway between TMSs M1 and M2 which opens in response to the rearrangement of cytoplasmic domains, resulting from phosphorylation (Dubey et al. 2021). This causes pump inhibition in the presence of high K+ resulting in ATP conservation.

Accession Number:P03960
Protein Name:ATKB aka KDPB aka B0697
Length:682
Molecular Weight:72199.00
Species:Escherichia coli [83333]
Number of TMSs:7
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate potassium(1+)

Cross database links:

RefSeq: AP_001335.1    NP_415225.1   
Entrez Gene ID: 947450   
Pfam: PF00122    PF00702   
BioCyc: EcoCyc:KDPB-MONOMER    ECOL168927:B0697-MONOMER   
KEGG: ecj:JW0685    eco:b0697   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0005524 F:ATP binding
GO:0000287 F:magnesium ion binding
GO:0008556 F:potassium-transporting ATPase activity
GO:0006754 P:ATP biosynthetic process
GO:0006813 P:potassium ion transport

References (5)

[1] “Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum.”  Hesse J.E.et.al.   6146979
[2] “A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map.”  Oshima T.et.al.   8905232
[3] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[4] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[5] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
Structure:
1SVJ   1U7Q   2A00   2A29   5MRW   6HRA   6HRB     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MSRKQLALFE PTLVVQALKE AVKKLNPQAQ WRNPVMFIVW IGSLLTTCIS IAMASGAMPG 
61:	NALFSAAISG WLWITVLFAN FAEALAEGRS KAQANSLKGV KKTAFARKLR EPKYGAAADK 
121:	VPADQLRKGD IVLVEAGDII PCDGEVIEGG ASVDESAITG ESAPVIRESG GDFASVTGGT 
181:	RILSDWLVIE CSVNPGETFL DRMIAMVEGA QRRKTPNEIA LTILLIALTI VFLLATATLW 
241:	PFSAWGGNAV SVTVLVALLV CLIPTTIGGL LSAIGVAGMS RMLGANVIAT SGRAVEAAGD 
301:	VDVLLLDKTG TITLGNRQAS EFIPAQGVDE KTLADAAQLA SLADETPEGR SIVILAKQRF 
361:	NLRERDVQSL HATFVPFTAQ SRMSGINIDN RMIRKGSVDA IRRHVEANGG HFPTDVDQKV 
421:	DQVARQGATP LVVVEGSRVL GVIALKDIVK GGIKERFAQL RKMGIKTVMI TGDNRLTAAA 
481:	IAAEAGVDDF LAEATPEAKL ALIRQYQAEG RLVAMTGDGT NDAPALAQAD VAVAMNSGTQ 
541:	AAKEAGNMVD LDSNPTKLIE VVHIGKQMLM TRGSLTTFSI ANDVAKYFAI IPAAFAATYP 
601:	QLNALNIMCL HSPDSAILSA VIFNALIIVF LIPLALKGVS YKPLTASAML RRNLWIYGLG 
661:	GLLVPFIGIK VIDLLLTVCG LV