TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.1.13.1
Vitamin B12 porter. The 3-D structure of BtuCDF has been solved to 2.6 Å (Hvorup et al., 2007). The conformational transition pathways of BtuCD has been revealed by targeted molecular dynamics simulations (Weng et al., 2012). Asymmetric states of BtuCD are not discriminated by its cognate substrate binding protein BtuF (Korkhov et al., 2012).  ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface, whereas substrate translocation takes place at the translocation pathway between the TM subunits, which is more than 30 angstroms away from the NBD dimer interface.  Hydrolysis of ATP appears to facilitate substrate translocation by opening the cytoplasmic end of translocation pathway (Pan et al. 2016). The molecular mechanism of ATP hydrolysis by BtuCD-F may proceeds in a stepwise manner (Prieß et al. 2018). First, nucleophilic attack of an activated lytic water molecule at the ATP gamma-phosphate yields ADP + HPO42-. A conserved glutamate located close to the gamma-phosphate transiently accepts a proton acting as a catalytic base. In the second step, the proton transfers back from the catalytic base to the gamma-phosphate, yielding ADP + H2PO4-. These two reaction steps are followed by rearrangements of the hydrogen bond network and the coordination of the Mg2+ ion. The overall free energy change of the reaction is close to zero, suggesting that ATP binding is essential for tight dimerization of the nucleotide-binding domains and the transition of the transmembrane domains from inward- to outward-facing. ATP hydrolysis resets the conformational cycle (Prieß et al. 2018).

Accession Number:P06609
Protein Name:BtuC aka B1711
Length:326
Molecular Weight:34949.00
Species:Escherichia coli [83333]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate cyanocob(III)alamin

Cross database links:

DIP: DIP-9233N
RefSeq: AP_002331.1    NP_416226.1   
Entrez Gene ID: 945877   
Pfam: PF01032   
BioCyc: EcoCyc:BTUC-MONOMER    ECOL168927:B1711-MONOMER   
KEGG: ecj:JW1701    eco:b1711   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0015235 F:cobalamin transporter activity
GO:0015889 P:cobalamin transport

References (8)

[1] “Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic-binding-protein-dependent transport systems.”  Friedrich M.J.et.al.   3528129
[2] “Vitamin B12 transport in Escherichia coli K12 does not require the btuE gene of the btuCED operon.”  Rioux C.R.et.al.   2671656
[3] “A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map.”  Aiba H.et.al.   9097039
[4] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[5] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[6] “Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli.”  Cadieux N.et.al.   11790740
[7] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
[8] “The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism.”  Locher K.P.et.al.   12004122
Structure:
1L7V   2QI9   4DBL   4FI3   4R9U     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MLTLARQQQR QNIRWLLCLS VLMLLALLLS LCAGEQWISP GDWFTPRGEL FVWQIRLPRT 
61:	LAVLLVGAAL AISGAVMQAL FENPLAEPGL LGVSNGAGVG LIAAVLLGQG QLPNWALGLC 
121:	AIAGALIITL ILLRFARRHL STSRLLLAGV ALGIICSALM TWAIYFSTSV DLRQLMYWMM 
181:	GGFGGVDWRQ SWLMLALIPV LLWICCQSRP MNMLALGEIS ARQLGLPLWF WRNVLVAATG 
241:	WMVGVSVALA GAIGFIGLVI PHILRLCGLT DHRVLLPGCA LAGASALLLA DIVARLALAA 
301:	AELPIGVVTA TLGAPVFIWL LLKAGR