TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.5.1.1
General secretory pathway (Sec-SRP) complex.  A biphasic pulling force may act on TMSs during translocon-mediated membrane integration (Ismail et al. 2012).  Intermediate structures for the insertion of integral membrane proteins have been visualized (Bischoff et al. 2014).  Insertion of the Type II single span (N-terminus, in, C-terminus, out) protein, RodZ, requires only SecYEG, SecA and the pmf, but not SecB, SecDF, YidC or FtsY (Rawat et al. 2015).  The combined effects of ribosome and peptide binding to SecYEG may allow for co-translational membrane insertion of successive transmembrane segments (Ge et al. 2014). SecA penetrates deeply into the SecYEG channel during insertion, contacting transmembrane helices and periplasmic loops (Banerjee et al. 2017). A partially inserted nascent chain unzips the Sec translocon's lateral gate (Kater et al. 2019). Cardiolipin (CL) is required in vivo for the stability of the bacterial translocon (SecYEG) as well as its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli (Ryabichko et al. 2020). PpiD (623 aas and 1 N-terminal TMS), a peptidyl-prolyl cis-trans isomerase D, and YfgM (206 aas and 1 N-terminal TMS) facilitate the transport of toxins into the E. coli cell in a SecY-dependent process (Jones et al. 2021). Synchronized real-time measurement of Sec-mediated protein translocation has been described (Gupta et al. 2021). An extracellular cutinase from Amycolatopsis mediterranei (AmCut) is able to degrade the plastics, polycaprolactone and polybutylene succinate (Tan et al. 2022). It is secreted from E. coli using the Sec system for export across the inner membrane, and possibly, a non-classical secretion pathway for export across the outer membrane (Tan et al. 2022). The inner membrane YfgM-PpiD heterodimer, both proteins with N-terminal transmembrane segments and C-terminal periplasmic domains, acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation (Miyazaki et al. 2022). Helicobacter pylori SecA Inhibitors have been identified (Jian et al. 2023).

Accession Number:P0AGA2
Protein Name:Preprotein translocase subunit SecY aka PRLA aka B3300
Length:443
Molecular Weight:48512.00
Species:Escherichia coli [83333]
Number of TMSs:10
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate protein polypeptide chain

Cross database links:

RefSeq: AP_004490.1    NP_417759.1   
Entrez Gene ID: 947799   
Pfam: PF00344   
BioCyc: EcoCyc:SECY    ECOL168927:B3300-MONOMER   
KEGG: ecj:JW3262    eco:b3300   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0015450 F:P-P-bond-hydrolysis-driven protein transmem...
GO:0065002 P:intracellular protein transmembrane transport
GO:0043952 P:protein transport by the Sec complex

References (12)

[1] “The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene.”  Cerretti D.P.et.al.   6222285
[2] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[3] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[4] “Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli.”  Akiyama Y.et.al.   2828030
[5] “Biochemical analysis of the biogenesis and function of the Escherichia coli export factor SecY.”  Swidersky U.E.et.al.   1633829
[6] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
[7] “Structure, function, and biogenesis of SecY, an integral membrane protein involved in protein export.”  Ito K.et.al.   2202723
[8] “Temperature-sensitive sec mutants of Escherichia coli: inhibition of protein export at the permissive temperature.”  Ito K.et.al.   2646297
[9] “Characterization of cold-sensitive secY mutants of Escherichia coli.”  Baba T.et.al.   2254269
[10] “Novel prlA alleles defective in supporting staphylokinase processing in Escherichia coli.”  Sako T.et.al.   2007553
[11] “PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains.”  Osborne R.S.et.al.   8253067
[12] “The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE.”  Flower A.M.et.al.   7889938
Structure:
2AKH   2AKI   3J45   3J46   5ABB   5GAE   5MG3   5NCO   6R7L      [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAKQPGLDFQ SAKGGLGELK RRLLFVIGAL IVFRIGSFIP IPGIDAAVLA KLLEQQRGTI 
61:	IEMFNMFSGG ALSRASIFAL GIMPYISASI IIQLLTVVHP TLAEIKKEGE SGRRKISQYT 
121:	RYGTLVLAIF QSIGIATGLP NMPGMQGLVI NPGFAFYFTA VVSLVTGTMF LMWLGEQITE 
181:	RGIGNGISII IFAGIVAGLP PAIAHTIEQA RQGDLHFLVL LLVAVLVFAV TFFVVFVERG 
241:	QRRIVVNYAK RQQGRRVYAA QSTHLPLKVN MAGVIPAIFA SSIILFPATI ASWFGGGTGW 
301:	NWLTTISLYL QPGQPLYVLL YASAIIFFCF FYTALVFNPR ETADNLKKSG AFVPGIRPGE 
361:	QTAKYIDKVM TRLTLVGALY ITFICLIPEF MRDAMKVPFY FGGTSLLIVV VVIMDFMAQV 
421:	QTLMMSSQYE SALKKANLKG YGR