TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.5.1.1
General secretory pathway (Sec-SRP) complex.  A biphasic pulling force may act on TMSs during translocon-mediated membrane integration (Ismail et al. 2012).  Intermediate structures for the insertion of integral membrane proteins have been visualized (Bischoff et al. 2014).  Insertion of the Type II single span (N-terminus, in, C-terminus, out) protein, RodZ, requires only SecYEG, SecA and the pmf, but not SecB, SecDF, YidC or FtsY (Rawat et al. 2015).  The combined effects of ribosome and peptide binding to SecYEG may allow for co-translational membrane insertion of successive transmembrane segments (Ge et al. 2014). SecA penetrates deeply into the SecYEG channel during insertion, contacting transmembrane helices and periplasmic loops (Banerjee et al. 2017). A partially inserted nascent chain unzips the Sec translocon's lateral gate (Kater et al. 2019). Cardiolipin (CL) is required in vivo for the stability of the bacterial translocon (SecYEG) as well as its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli (Ryabichko et al. 2020). PpiD (623 aas and 1 N-terminal TMS), a peptidyl-prolyl cis-trans isomerase D, and YfgM (206 aas and 1 N-terminal TMS) facilitate the transport of toxins into the E. coli cell in a SecY-dependent process (Jones et al. 2021). Synchronized real-time measurement of Sec-mediated protein translocation has been described (Gupta et al. 2021). An extracellular cutinase from Amycolatopsis mediterranei (AmCut) is able to degrade the plastics, polycaprolactone and polybutylene succinate (Tan et al. 2022). It is secreted from E. coli using the Sec system for export across the inner membrane, and possibly, a non-classical secretion pathway for export across the outer membrane (Tan et al. 2022). The inner membrane YfgM-PpiD heterodimer, both proteins with N-terminal transmembrane segments and C-terminal periplasmic domains, acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation (Miyazaki et al. 2022). Helicobacter pylori SecA Inhibitors have been identified (Jian et al. 2023).

Accession Number:P0AGD7
Protein Name:Signal recognition particle protein Ffh aka B2610
Length:453
Molecular Weight:49787.00
Species:Escherichia coli [83333]
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate protein polypeptide chain

Cross database links:

DIP: DIP-31865N
RefSeq: AP_003191.1    NP_417101.1   
Entrez Gene ID: 947102   
Pfam: PF00448    PF02881    PF02978   
BioCyc: EcoCyc:EG10300-MONOMER    ECOL168927:B2610-MONOMER   
KEGG: ecj:JW5414    eco:b2610   

Gene Ontology

GO:0005786 C:signal recognition particle, endoplasmic re...
GO:0008312 F:7S RNA binding
GO:0005525 F:GTP binding
GO:0017111 F:nucleoside-triphosphatase activity
GO:0005515 F:protein binding
GO:0006614 P:SRP-dependent cotranslational protein targe...

References (11)

[1] “The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide.”  Bystroem A.S.et.al.   6357787
[2] “Construction of a contiguous 874-kb sequence of the Escherichia coli-K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features.”  Yamamoto Y.et.al.   9205837
[3] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[4] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[5] “E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle.”  Ribes V.et.al.   2171778
[6] “Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex.”  Luirink J.et.al.   1279430
[7] “The E. coli ffh gene is necessary for viability and efficient protein export.”  Phillips G.J.et.al.   1331806
[8] “Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome.”  Ullers R.S.et.al.   12756233
[9] “The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome.”  Gu S.-Q.et.al.   12702815
[10] “Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor.”  Buskiewicz I.et.al.   15148364
[11] “Structure of a methionine-rich segment of Escherichia coli Ffh protein.”  Oh D.-B.et.al.   8898086
Structure:
1DUL   1HQ1   2J28   2PXB   2PXD   2PXE   2PXF   2PXK   2PXL   2PXP   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MFDNLTDRLS RTLRNISGRG RLTEDNVKDT LREVRMALLE ADVALPVVRE FINRVKEKAV 
61:	GHEVNKSLTP GQEFVKIVRN ELVAAMGEEN QTLNLAAQPP AVVLMAGLQG AGKTTSVGKL 
121:	GKFLREKHKK KVLVVSADVY RPAAIKQLET LAEQVGVDFF PSDVGQKPVD IVNAALKEAK 
181:	LKFYDVLLVD TAGRLHVDEA MMDEIKQVHA SINPVETLFV VDAMTGQDAA NTAKAFNEAL 
241:	PLTGVVLTKV DGDARGGAAL SIRHITGKPI KFLGVGEKTE ALEPFHPDRI ASRILGMGDV 
301:	LSLIEDIESK VDRAQAEKLA SKLKKGDGFD LNDFLEQLRQ MKNMGGMASL MGKLPGMGQI 
361:	PDNVKSQMDD KVLVRMEAII NSMTMKERAK PEIIKGSRKR RIAAGCGMQV QDVNRLLKQF 
421:	DDMQRMMKKM KKGGMAKMMR SMKGMMPPGF PGR