TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.6.1.4
Cu+ /Ag+ efflux pump, CusABCF (may pump ions from the periplasm to the external medium); CusF is a periplasmic Cu+ /Ag+ binding receptor essential for full resistance (Franke et al., 2003). Bagai et al. (2007) reported that CusB (MFP) binds one molecule of Ag+ or Cu+ via four conserved methionines and induces a substrate-linked conformational change (Bagai et al., 2007). The crystal structures of CusB are available (Su et al., 2009). The crystal structure of the CusAB complex has been solved (PDB# 3K07) (Su et al., 2011a). CusC is listed under TC# 1.B.17.3.5. The metal-binding methionines play a role in restricting the substrates to monovalent heavy metals (Conroy et al., 2010). It has been reported to export L-cysteine (Yamada et al., 2006). Crystal structures of the CusA efflux pump suggested that methionine residues in a 3-methionine cluster, bind the metal as a transport intermediate (Long et al., 2010). Four methionine pairs in the transmembrane region, and one in the periplasmic domain may comprise the channel. Cu+ is exported from the cytoplasm to the periplasmic chaparone, CusF in the extracellular space (Padilla-Benavides et al. 2014). The Cus efflux system removes Cu+ and Ag+ from both the cell cytoplasm and the periplasm (Su et al., 2011b; Delmar et al. 2014). Metal-bound CusB is required for activation of Cu+ transfer from CusF directly to a site in the CusA antiporter (Chacón et al. 2014). Metal transfer occurs between CusF and apo-CusB, and when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.  The ratio of CusA (RND):CusB (MFP):CusC (OMF) is 3:6:3 (Delmar et al. 2013). Intermediates in metal transfer reactions have been measured (Chacón et al. 2018).

Accession Number:P38054
Protein Name:CusA aka B0575
Length:1047
Molecular Weight:114707.00
Species:Escherichia coli [83333]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate copper(1+), silver(1+)

Cross database links:

RefSeq: AP_001220.1    NP_415107.1   
Entrez Gene ID: 945191   
Pfam: PF00873   
BioCyc: EcoCyc:YBDE-MONOMER    ECOL168927:B0575-MONOMER   
KEGG: ecj:JW0564    eco:b0575   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0005507 F:copper ion binding
GO:0005375 F:copper ion transmembrane transporter activity
GO:0005515 F:protein binding
GO:0015080 F:silver ion transmembrane transporter activity
GO:0006878 P:cellular copper ion homeostasis
GO:0060003 P:copper ion export
GO:0010273 P:detoxification of copper ion
GO:0015679 P:plasma membrane copper ion transport
GO:0010272 P:response to silver ion
GO:0015673 P:silver ion transport

References (9)

[1] “A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map.”  Oshima T.et.al.   8905232
[2] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[3] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[4] “Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli.”  Pi J.et.al.   1711024
[5] “Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.”  Borodovsky M.et.al.   7984428
[6] “Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.”  Munson G.P.et.al.   11004187
[7] “The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli.”  Outten F.W.et.al.   11399769
[8] “The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions.”  Franke S.et.al.   11283292
[9] “Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.”  Franke S.et.al.   12813074
Structure:
3K07   3K0I   3KSO   3KSS   3NE5   3T51   3T53   3T56   4DNR   4DNT   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MIEWIIRRSV ANRFLVLMGA LFLSIWGTWT IINTPVDALP DLSDVQVIIK TSYPGQAPQI 
61:	VENQVTYPLT TTMLSVPGAK TVRGFSQFGD SYVYVIFEDG TDPYWARSRV LEYLNQVQGK 
121:	LPAGVSAELG PDATGVGWIY EYALVDRSGK HDLADLRSLQ DWFLKYELKT IPDVAEVASV 
181:	GGVVKEYQVV IDPQRLAQYG ISLAEVKSAL DASNQEAGGS SIELAEAEYM VRASGYLQTL 
241:	DDFNHIVLKA SENGVPVYLR DVAKVQIGPE MRRGIAELNG EGEVAGGVVI LRSGKNAREV 
301:	IAAVKDKLET LKSSLPEGVE IVTTYDRSQL IDRAIDNLSG KLLEEFIVVA VVCALFLWHV 
361:	RSALVAIISL PLGLCIAFIV MHFQGLNANI MSLGGIAIAV GAMVDAAIVM IENAHKRLEE 
421:	WQHQHPDATL DNKTRWQVIT DASVEVGPAL FISLLIITLS FIPIFTLEGQ EGRLFGPLAF 
481:	TKTYAMAGAA LLAIVVIPIL MGYWIRGKIP PESSNPLNRF LIRVYHPLLL KVLHWPKTTL 
541:	LVAALSVLTV LWPLNKVGGE FLPQINEGDL LYMPSTLPGI SAAEAASMLQ KTDKLIMSVP 
601:	EVARVFGKTG KAETATDSAP LEMVETTIQL KPQEQWRPGM TMDKIIEELD NTVRLPGLAN 
661:	LWVPPIRNRI DMLSTGIKSP IGIKVSGTVL ADIDAMAEQI EEVARTVPGV ASALAERLEG 
721:	GRYINVEINR EKAARYGMTV ADVQLFVTSA VGGAMVGETV EGIARYPINL RYPQSWRDSP 
781:	QALRQLPILT PMKQQITLAD VADIKVSTGP SMLKTENARP TSWIYIDARD RDMVSVVHDL 
841:	QKAIAEKVQL KPGTSVAFSG QFELLERANH KLKLMVPMTL MIIFVLLYLA FRRVGEALLI 
901:	ISSVPFALVG GIWLLWWMGF HLSVATGTGF IALAGVAAEF GVVMLMYLRH AIEAVPSLNN 
961:	PQTFSEQKLD EALYHGAVLR VRPKAMTVAV IIAGLLPILW GTGAGSEVMS RIAAPMIGGM 
1021:	ITAPLLSLFI IPAAYKLMWL HRHRVRK