TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.21.1.1
The C-terminal tail-anchored (TA) membrane protein biogenesis/insertion complex, Get1/Get2/Get3 (Stefer et al., 2011; Kubota et al. 2012; Wang et al. 2014). The ATPase (Get3) is homologous to ArsA of the arsenite exporters (Castillo and Saier, 2010). Get1 and Get2 but not Get3 are required for mitochondrial autophagy, either because of a requirement for Get1/2-dependent TA protein(s), or because the Get1/2 complex itself acts specifically in mitophagy (Onishi et al. 2018). Get3 serves as a chaparone protein, feeding into Get1/Get2 (McDowell et al. 2020). There appear to be distinctive pathways of mammalian mitophagy (Xu et al. 2020). The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER (Heo et al. 2023).  Alterations of lipid-mediated mitophagy result in aging-dependent sensorimotor defects (Oleinik et al. 2023).

Accession Number:P40056
Protein Name:Golgi to ER traffic protein 2
Length:285
Molecular Weight:31493.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Number of TMSs:3
Location1 / Topology2 / Orientation3: Endoplasmic reticulum membrane1 / Multi-pass membrane protein2
Substrate protein polypeptide chain

Cross database links:

DIP: DIP-4508N
Entrez Gene ID: 856817   
Pfam: PF08690   
KEGG: sce:YER083C   

Gene Ontology

GO:0005789 C:endoplasmic reticulum membrane
GO:0043529 C:GET complex
GO:0000139 C:Golgi membrane
GO:0016021 C:integral to membrane
GO:0043495 F:protein anchor
GO:0045048 P:protein insertion into ER membrane
GO:0006890 P:retrograde vesicle-mediated transport, Golgi to ER

References (13)

[1] “The nucleotide sequence of Saccharomyces cerevisiae chromosome V.”  Dietrich F.S.et.al.   9169868
[2] “Functional discovery via a compendium of expression profiles.”  Hughes T.R.et.al.   10929718
[3] “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.”  Ho Y.et.al.   11805837
[4] “Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.”  Enyenihi A.H.et.al.   12586695
[5] “Sequencing and comparison of yeast species to identify genes and regulatory elements.”  Kellis M.et.al.   12748633
[6] “Global analysis of protein localization in budding yeast.”  Huh W.-K.et.al.   14562095
[7] “Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin.”  Zewail A.et.al.   12615994
[8] “Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.”  Schuldiner M.et.al.   16269340
[9] “The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae.”  Auld K.L.et.al.   16816426
[10] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[11] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[12] “The GET complex mediates insertion of tail-anchored proteins into the ER membrane.”  Schuldiner M.et.al.   18724936
[13] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
Structure:
3SJD   3ZS9     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MSELTEAEKR RLLRERRQKK FSNGGASSRL NKITGQASSH LNAESPLDAP SAAKTTPPAS 
61:	VHSATPDIKE DSNVAPQLDL LKQLAAMQGQ GTGKSTPQDS STPDLLSLLS SMNTGMPSAE 
121:	GTPSFGQAAP AAPINQAALD YHDYLLNRLK AWTILVKWVF FLLPYLYLIT RPNSSVWPAY 
181:	AFTQSAWFAP LRNPSNFTRI FATFEFLSIS IYYQLLKNVE HKSKIKNLQD TNKLVKLVSL 
241:	VPEGVIPVAN LKGKLITLLQ YWDLLSMLIT DISFVLIVLG LLTYL