TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.21.1.1
The C-terminal tail-anchored (TA) membrane protein biogenesis/insertion complex, Get1/Get2/Get3 (Stefer et al., 2011; Kubota et al. 2012; Wang et al. 2014). The ATPase (Get3) is homologous to ArsA of the arsenite exporters (Castillo and Saier, 2010). Get1 and Get2 but not Get3 are required for mitochondrial autophagy, either because of a requirement for Get1/2-dependent TA protein(s), or because the Get1/2 complex itself acts specifically in mitophagy (Onishi et al. 2018). Get3 serves as a chaparone protein, feeding into Get1/Get2 (McDowell et al. 2020). There appear to be distinctive pathways of mammalian mitophagy (Xu et al. 2020). The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER (Heo et al. 2023).  Alterations of lipid-mediated mitophagy result in aging-dependent sensorimotor defects (Oleinik et al. 2023).

Accession Number:P53192
Protein Name:Golgi to ER traffic protein 1
Length:235
Molecular Weight:27092.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Number of TMSs:3
Location1 / Topology2 / Orientation3: Endoplasmic reticulum membrane1 / Multi-pass membrane protein2
Substrate protein polypeptide chain

Cross database links:

DIP: DIP-6309N
Entrez Gene ID: 852864   
Pfam: PF04420   
KEGG: sce:YGL020C   

Gene Ontology

GO:0005789 C:endoplasmic reticulum membrane
GO:0043529 C:GET complex
GO:0000139 C:Golgi membrane
GO:0016021 C:integral to membrane
GO:0005739 C:mitochondrion
GO:0043495 F:protein anchor
GO:0006874 P:cellular calcium ion homeostasis
GO:0007005 P:mitochondrion organization
GO:0045048 P:protein insertion into ER membrane
GO:0006986 P:response to unfolded protein
GO:0006890 P:retrograde vesicle-mediated transport, Golgi to ER

References (10)

[1] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[2] “Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae.”  Dimmer K.S.et.al.   11907266
[3] “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.”  Ho Y.et.al.   11805837
[4] “Global analysis of protein localization in budding yeast.”  Huh W.-K.et.al.   14562095
[5] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[6] “Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.”  Schuldiner M.et.al.   16269340
[7] “Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae.”  Ando A.et.al.   15909163
[8] “The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae.”  Auld K.L.et.al.   16816426
[9] “The GET complex mediates insertion of tail-anchored proteins into the ER membrane.”  Schuldiner M.et.al.   18724936
[10] “Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes.”  Kung L.A.et.al.   19756047
Structure:
3B2E   3SJA   3SJB   3SJC   3VLC   3ZS8     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MHWAAAVAIF FIVVTKFLQY TNKYHEKWIS KFAPGNELSK KYLAKVKERH ELKEFNNSIS 
61:	AQDNYAKWTK NNRKLDSLDK EINNLKDEIQ SENKAFQAHL HKLRLLALTV PFFVFKIMYG 
121:	KTPVYKLSSS TSTLFPTFVS GVWSQGWLYV LLHPLRTISQ KWHIMEGKFG ASKFDDMALQ 
181:	SVSLGIWVWA LMNVINGVEF IVKQLFLTPK MEAPASVETQ EEKALDAVDD AIILD