| |
---|---|
Accession Number: | Q12809 |
Protein Name: | H-ERG aka Erg1 |
Length: | 1159 |
Molecular Weight: | 126655.00 |
Species: | Homo sapiens (Human) [9606] |
Number of TMSs: | 7 |
Location1 / Topology2 / Orientation3: | Membrane1 / Multi-pass membrane protein2 |
Substrate | potassium(1+), potassium(1+) |
Cross database links:
RefSeq: | NP_000229.1 NP_742053.1 NP_742054.1 |
---|---|
Entrez Gene ID: | 3757 |
Pfam: | PF00027 PF00520 PF00989 |
OMIM: |
152427 gene+phenotype 609620 phenotype |
KEGG: | hsa:3757 |
Gene Ontology
GO:0008076
C:voltage-gated potassium channel complex
GO:0005251
F:delayed rectifier potassium channel activity
GO:0000155
F:two-component sensor activity
GO:0008015
P:blood circulation
GO:0006936
P:muscle contraction
GO:0006813
P:potassium ion transport
GO:0008016
P:regulation of heart contraction
GO:0006355
P:regulation of transcription, DNA-dependent
GO:0007165
P:signal transduction
GO:0055085
P:transmembrane transport
GO:0000160
P:two-component signal transduction system (p...
| |
References (39)[1] “A family of potassium channel genes related to eag in Drosophila and mammals.” Warmke J.W.et.al. 8159766 [2] “Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome.” Itoh T.et.al. 9600240 [3] “Isolation of novel heart-specific genes using the BodyMap database.” Soejima H.et.al. 11374908 [4] “Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells.” Crociani O.et.al. 12431979 [5] “Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current.” London B.et.al. 9351462 [6] “Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts.” Lees-Miller J.P.et.al. 9351446 [7] “A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current.” Kupershmidt S.et.al. 9765245 [8] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [9] “Role of glycosylation in cell surface expression and stability of HERG potassium channels.” Gong Q.et.al. 12063277 [10] “Cyclic AMP regulates the HERG K(+) channel by dual pathways.” Cui J.et.al. 10837251 [11] “A minK-HERG complex regulates the cardiac potassium current I(Kr).” McDonald T.V.et.al. 9230439 [12] “MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia.” Abbott G.W.et.al. 10219239 [13] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.” Mayya V.et.al. 19690332 [14] “Crystal structure and functional analysis of the HERG potassium channel N-terminus: a eukaryotic PAS domain.” Morais Cabral J.H.et.al. 9845367 [15] “A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome.” Curran M.E.et.al. 7889573 [16] “Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome.” Satler C.A.et.al. 8914737 [17] “Missense mutation in the pore region of HERG causes familial long QT syndrome.” Benson D.W.et.al. 8635257 [18] “A mutation in HERG associated with notched T waves in long QT syndrome.” Dausse E.et.al. 8877771 [19] “Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome.” Tanaka T.et.al. 9024139 [20] “Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1.” Splawski I.et.al. 9693036 [21] “Multiple different missense mutations in the pore region of HERG in patients with long QT syndrome.” Satler C.A.et.al. 9544837 [22] “Novel missense mutation (G601S) of HERG in a Japanese long QT syndrome family.” Akimoto K.et.al. 9452080 [23] “C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence.” Berthet M.et.al. 10086971 [24] “Novel KCNQ1 and HERG missense mutations in Dutch long-QT families.” Jongbloed R.J.E.et.al. 10220144 [25] “Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation.” Chen J.et.al. 10187793 [26] “Characterization of a novel missense mutation in the pore of HERG in a patient with long QT syndrome.” Yoshida H.et.al. 10517660 [27] “Long QT syndrome with a high mortality rate caused by a novel G572R missense mutation in KCNH2.” Larsen L.A.et.al. 10735633 [28] “Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.” Splawski I.et.al. 10973849 [29] “Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a non-pathological 9 bp insertion.” Paulussen A.et.al. 10790218 [30] “Survey of the coding region of the HERG gene in long QT syndrome reveals six novel mutations and an amino acid polymorphism with possible phenotypic effects.” Laitinen P.et.al. 10862094 [31] “Bradycardia-induced long QT syndrome caused by a de novo missense mutation in the S2-S3 inner loop of HERG.” Yoshida H.et.al. 11170080 [32] “Characterization of a novel missense mutation E637K in the pore-S6 loop of HERG in a patient with long QT syndrome.” Hayashi K.et.al. 12062363 [33] “Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.” Yang P.et.al. 11997281 [34] “A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency.” Paulussen A.et.al. 12354768 [35] “Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome.” Johnson W.H. Jr.et.al. 12621127 | |
Structure: | |
[...more] |
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MPVRRGHVAP QNTFLDTIIR KFEGQSRKFI IANARVENCA VIYCNDGFCE LCGYSRAEVM 61: QRPCTCDFLH GPRTQRRAAA QIAQALLGAE ERKVEIAFYR KDGSCFLCLV DVVPVKNEDG 121: AVIMFILNFE VVMEKDMVGS PAHDTNHRGP PTSWLAPGRA KTFRLKLPAL LALTARESSV 181: RSGGAGGAGA PGAVVVDVDL TPAAPSSESL ALDEVTAMDN HVAGLGPAEE RRALVGPGSP 241: PRSAPGQLPS PRAHSLNPDA SGSSCSLART RSRESCASVR RASSADDIEA MRAGVLPPPP 301: RHASTGAMHP LRSGLLNSTS DSDLVRYRTI SKIPQITLNF VDLKGDPFLA SPTSDREIIA 361: PKIKERTHNV TEKVTQVLSL GADVLPEYKL QAPRIHRWTI LHYSPFKAVW DWLILLLVIY 421: TAVFTPYSAA FLLKETEEGP PATECGYACQ PLAVVDLIVD IMFIVDILIN FRTTYVNANE 481: EVVSHPGRIA VHYFKGWFLI DMVAAIPFDL LIFGSGSEEL IGLLKTARLL RLVRVARKLD 541: RYSEYGAAVL FLLMCTFALI AHWLACIWYA IGNMEQPHMD SRIGWLHNLG DQIGKPYNSS 601: GLGGPSIKDK YVTALYFTFS SLTSVGFGNV SPNTNSEKIF SICVMLIGSL MYASIFGNVS 661: AIIQRLYSGT ARYHTQMLRV REFIRFHQIP NPLRQRLEEY FQHAWSYTNG IDMNAVLKGF 721: PECLQADICL HLNRSLLQHC KPFRGATKGC LRALAMKFKT THAPPGDTLV HAGDLLTALY 781: FISRGSIEIL RGDVVVAILG KNDIFGEPLN LYARPGKSNG DVRALTYCDL HKIHRDDLLE 841: VLDMYPEFSD HFWSSLEITF NLRDTNMIPG SPGSTELEGG FSRQRKRKLS FRRRTDKDTE 901: QPGEVSALGP GRAGAGPSSR GRPGGPWGES PSSGPSSPES SEDEGPGRSS SPLRLVPFSS 961: PRPPGEPPGG EPLMEDCEKS SDTCNPLSGA FSGVSNIFSF WGDSRGRQYQ ELPRCPAPTP 1021: SLLNIPLSSP GRRPRGDVES RLDALQRQLN RLETRLSADM ATVLQLLQRQ MTLVPPAYSA 1081: VTTPGPGPTS TSPLLPVSPL PTLTLDSLSQ VSQFMACEEL PPGAPELPQE GPTRRLSLPG 1141: QLGALTSQPL HRHGSDPGS