TCDB is operated by the Saier Lab Bioinformatics Group

1.A.25 The Gap Junction-forming Innexin (Innexin) Family

Innexins comprise a large family of proteins that form intercellular gap junctional channels in invertebrates, but only a few have been functionally characterized. These junctions allow electrical coupling as well as the free flow of small molecules between cells. The C. elegans INX-3, but not a paralogue, EAT-5, induced electrical coupling between Xenopus oocyte pairs (Landesman et al., 1999). Voltage and pH gating of INX-3 channels is functionally similar to that of vertebrate connexin channels (TC# 1.A.24). Many paralogues of the innexin family are found in both C. elegans and D. melanogaster as well as other invertebrates, and these proteins are subject to differential developmental control in various body tissues. Innexins exhibit a 4 TMS topology. Homologues, called pannexins, have been identified in vertebrates (Hua et al., 2003; Yen and Saier, 2007). The LRRC8 family (TC# 1.A.25.3) is a member of the Pfam pannexin-like superfamily. The structures of LRRC8 proteins have been determined, and they resemble connexins (Deneka et al. 2018). C. elegans unpiared innexins form gap junctions that transport ions including K+ and small molecules such as ATP (Sangaletti et al. 2014).

Gap junctions are widespread in immature neuronal circuits. A transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of C. elegans. NSY-5 forms hemichannels and intercellular gap-junction channels, consistent with a combination of cell-intrinsic and network functions (Chuang et al., 2007). In addition to making gap junctions, innexins also form non-junctional membrane channels with properties similar to those of pannexons (Bao et al., 2007).  N-terminal- elongated innexins can act as a plug to manipulate hemichannel closure and provide a mechanism connecting the effect of hemichannel closure directly to apoptotic signaling transduction from the intracellular to the extracellular compartment (Chen et al. 2016). The physiology of hemichannels and gap junctions, including ion blockage of hemichannels, voltage gating of gap junctions, and asymmetry and delay of electrical synaptic transmission have been discussed (Wang and Liu 2021).

Pannexins in vertebrates have been studied in some detail (Shestopalov and Panchin, 2008; Boyce et al. 2013). They can form nonjunctional transmembrane 'hemichannels' for transport of molecules of less than 1000 Da, or intercellular gap junctions. They transport Ca2+, ATP, inositol triphosphate, and other small molecules. They can be present in plasma, ER and golgi membranes. Pannexin1 can form homooligomeric channels and heterooligomeric channels with Pannexin2. They form hemichannels with greater ease than connexin subunits (Shestopalov and Panchin, 2008). Scemes (2011) summarized the published data on hemichannel formation by junctional proteins. Silverman et al. 2008 have showed that probenecid inhibited currents mediated by pannexin 1 channels in the same concentration range as observed for inhibition of transport processes. Probenecid did not affect channels formed by connexins. Thus, probenecid allows for discrimination between channels formed by connexins and pannexins. A large protein, Nucleoside-diphosphate-kinase of P. gingivalis is secreted from epithelial cells In the absence of a leader sequence through a Pannexin-1 interactome (Atanasova et al. 2016). Pannexin 1 regulates skeletal muscle regeneration by promoting bleb-based myoblast migration and fusion through a lipid based signaling mechanism (Suarez-Berumen et al. 2021).

The volume-reglated Anion Channel, VRAC, consists of the leucine-rich repeat-containing protein 8A with N-terminal pannexin-like domain, LRRC8A, together with other LRRC8 subunits (B, C, D and E). The first two TMSs of the 4 TMS LRRC8 proteins appear as DUF3733 in CDD (Abascal and Zardoya, 2012). The C-terminal soluble domain shows sequence similarity to the heme-binding protein Shv (9.A.63.1.1) and pollen-specific leucine-rich repeat extension-like proteins (3.A.20.1.1).  The volume-regulated anion channel, VRAC, has LRRC8A as a VRAC component. It forms heteromers with other LRRC8 membrane proteins (Voss et al. 2014). Genomic disruption of LRRC8A ablated VRAC currents. Cells with disruption of all five LRRC8 genes required LRRC8A cotransfection with other LRRC8 isoforms to reconstitute VRAC currents. The isoform combination determined the VRAC inactivation kinetics. Taurine flux and regulatory volume decrease also depended on LRRC8 proteins. Thus, VRAC defines a class of anion channels, suggests that VRAC is identical to the volume-sensitive organic osmolyte/anion channel VSOAC, and explains the heterogeneity of native VRAC currents (Voss et al. 2014).

Connexins participate in the generation of intercellular calcium waves, in which calcium-mediated signaling responses spread to contiguous cells through gap junction to transmit calcium signaling throughout the airway epithelium. Pannexins in the nasal mucosa contribute not only to ciliary beat modulation via ATP release, but also regulation of mucus blanket components via H2O efflux. The synchronized roles of pannexin and connexin may allow effective mucociliary clearance in nasal mucosa (Ohbuchi and Suzuki 2018).

Using cryo-electron microscopy and X-ray crystallography, Deneka et al. 2018 determined the structure of a homomeric channel of the obligatory subunit LRRC8A (TC# 1.A.25.3.1). This protein conducts ions and has properties in common with endogenous heteromeric channels. Its modular structure consists of a transmembrane pore domain followed by a cytoplasmic leucine-rich repeat domain. The transmembrane domain, which is structurally related to connexins, is wide towards the cytoplasm but constricted on the outside by a structural unit that acts as a selectivity filter. An excess of basic residues in the filter and throughout the pore attracts anions by electrostatic interaction (Deneka et al. 2018).

The transport reaction catalyzed by innexin gap junctions is:

Small molecules (cell 1 cytoplasm)   Small molecules (cell 2 cytoplasm)

or for hemichannels:

Small molecules (cell cytoplasm)  Small molecules (out)

References associated with 1.A.25 family:

Abascal F. and Zardoya R. (2012). LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioessays. 34(7):551-60. 22532330
Abdo, R., A. Bholat, L. Jackson-Boeters, D. Johnston, S. Penuela, and Q. Zhang. (2023). Expression of pannexin1 in lung cancer brain metastasis and immune microenvironment. Clin Neuropathol. [Epub: Ahead of Print] 37073958
Ambrosi, C., O. Gassmann, J.N. Pranskevich, D. Boassa, A. Smock, J. Wang, G. Dahl, C. Steinem, and G.E. Sosinsky. (2010). Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem. 285: 24420-24431. 20516070
Atanasova, K., J. Lee, J. Roberts, K. Lee, D.M. Ojcius, and &.#.2.1.4.;. Yilmaz. (2016). Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome. Sci Rep 6: 37643. 27883084
Bao, L., S. Samuels, S. Locovei, E.R. Macagno, K.J. Muller, and G. Dahl. (2007). Innexins form two types of channels. FEBS Lett. 581: 5703-5708. 18035059
Baranova, A., D. Ivanov, N. Petrash, A. Pestova, M. Skoblov, I. Kelmanson, D. Shagin, S. Nazarenko, E. Geraymovych, O. Litvin, A. Tiunova, T.L. Born, N. Usman, D. Staroverov, S. Lukyanov, and Y. Panchin. (2004). The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83: 706-716. 15028292
Bargiotas, P., A. Krenz, S.G. Hormuzdi, D.A. Ridder, A. Herb, W. Barakat, S. Penuela, J. von Engelhardt, H. Monyer, and M. Schwaninger. (2011). Pannexins in ischemia-induced neurodegeneration. Proc. Natl. Acad. Sci. USA 108: 20772-20777. 22147915
Bauer, R., C. Lehmann, J. Martini, F. Eckardt, and M. Hoch. (2004). Gap junction channel protein innexin 2 is essential for epithelial morphogenesis in the Drosophila embryo. Mol. Biol. Cell 15: 2992-3004. 15047872
Bi, G., M. Su, N. Li, Y. Liang, S. Dang, J. Xu, M. Hu, J. Wang, M. Zou, Y. Deng, Q. Li, S. Huang, J. Li, J. Chai, K. He, Y.H. Chen, and J.M. Zhou. (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184: 3528-3541.e12. 33984278
Blenski, M. and R.H. Kehlenbach. (2019). Targeting of LRRC59 to the Endoplasmic Reticulum and the Inner Nuclear Membrane. Int J Mol Sci 20:. 30650545
Bohrmann, J. and J. Zimmermann. (2008). Gap junctions in the ovary of Drosophila melanogaster: localization of innexins 1, 2, 3 and 4 and evidence for intercellular communication via innexin-2 containing channels. BMC Dev Biol 8: 111. 19038051
Boucher, J., C. Simonneau, G. Denet, J. Clarhaut, A.C. Balandre, M. Mesnil, L. Cronier, and A. Monvoisin. (2018). Pannexin-1 in Human Lymphatic Endothelial Cells Regulates Lymphangiogenesis. Int J Mol Sci 19:. 29882918
Boyce AK., Prager RT., Wicki-Stordeur LE. and Swayne LA. (201). Pore positioning: current concepts in Pannexin channel trafficking. Channels (Austin). 8(2):110-7. 24300303
Bunse, S., M. Schmidt, S. Hoffmann, K. Engelhardt, G. Zoidl, and R. Dermietzel. (2011). Single cysteines in the extracellular and transmembrane regions modulate pannexin 1 channel function. J. Membr. Biol. 244: 21-33. 21938521
Chen, B., C. Xie, T. Shi, S. Yue, W. Li, G. Huang, Y. Zhang, and W. Liu. (2023). Activation of Swell1 in microglia suppresses neuroinflammation and reduces brain damage in ischemic stroke. Neurobiol Dis 176: 105936. 36511337
Chen, Y.B., W. Xiao, M. Li, Y. Zhang, Y. Yang, J.S. Hu, and K.J. Luo. (2016). N-TERMINALLY ELONGATED SpliInx2 AND SpliInx3 REDUCE BACULOVIRUS-TRIGGERED APOPTOSIS VIA HEMICHANNEL CLOSURE. Arch Insect Biochem Physiol 92: 24-37. 27030553
Chou, A., A. Lee, K.J. Hendargo, V.S. Reddy, M.A. Shlykov, H. Kuppusamykrishnan, A. Medrano-Soto, and M.H. Saier, Jr. (2017). Characterization of the Tetraspan Junctional Complex (4JC) superfamily. Biochim. Biophys. Acta. Biomembr 1859: 402-414. 27916633
Chuang, C.F., M.K. VanHoven, R.D. Fetter, V.K. Verselis and C.I. Bargmann (2007). An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans. Cell 129: 787-799 17512411
Cibelli, A., P. Dohare, D.C. Spray, and E. Scemes. (2023). Differential activation of mouse and human Panx1 channel variants. PLoS One 18: e0295710. 38100403
Curtin, K.D., Z. Zhang and R.J. Wyman (1999). Drosophila has several genes for gap junction proteins. Gene 232: 191-201. 10352230
Davis, B.K., H. Wen, and J.P. Ting. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29: 707-735. 21219188
DeLalio, L.J., E. Masati, S. Mendu, C.A. Ruddiman, Y. Yang, S.R. Johnstone, J.A. Milstein, T.C.S. Keller, 4th, R.B. Weaver, N.A. Guagliardo, A.K. Best, K.S. Ravichandran, D.A. Bayliss, M.L.S. Sequeira-Lopez, S.N. Sonkusare, X.H. Shu, B. Desai, P.Q. Barrett, T.H. Le, R.A. Gomez, and B.E. Isakson. (2020). PANNEXIN 1 CHANNELS IN RENIN-EXPRESSING CELLS INFLUENCE RENIN SECRETION AND BLOOD PRESSURE HOMEOSTASIS. Kidney Int. [Epub: Ahead of Print] 32446934
Deneka, D., M. Sawicka, A.K.M. Lam, C. Paulino, and R. Dutzler. (2018). Structure of a volume-regulated anion channel of the LRRC8 family. Nature. [Epub: Ahead of Print] 29769723
Deneka, D., S. Rutz, C.A.J. Hutter, M.A. Seeger, M. Sawicka, and R. Dutzler. (2021). Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nat Commun 12: 5435. 34521847
Deng, Z., Z. He, G. Maksaev, R.M. Bitter, M. Rau, J.A.J. Fitzpatrick, and P. Yuan. (2020). Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27: 373-381. 32231289
Firme, C.P., 3rd, R.G. Natan, N. Yazdani, E.R. Macagno, and M.W. Baker. (2012). Ectopic expression of select innexins in individual central neurons couples them to pre-existing neuronal or glial networks that express the same innexin. J. Neurosci. 32: 14265-14270. 23055495
Förderer, A., E. Li, A.W. Lawson, Y.N. Deng, Y. Sun, E. Logemann, X. Zhang, J. Wen, Z. Han, J. Chang, Y. Chen, P. Schulze-Lefert, and J. Chai. (2022). A wheat resistosome defines common principles of immune receptor channels. Nature 610: 532-539. 36163289
Ganfornina, M.D., D. Sanchez, M. Herrera and M.J. Bastiani (1999). Developmental expression and molecular characterization of two gap junction channel proteins during embryogenesis in the grasshopper Schistocerca americana. Dev. Genet. 24: 137-150. 10079517
García-Rojas, F., C. Flores-Muñoz, O. Santander, P. Solis, A.D. Martínez, &.#.1.9.3.;.O. Ardiles, and M. Fuenzalida. (2023). Pannexin-1 Modulates Inhibitory Transmission and Hippocampal Synaptic Plasticity. Biomolecules 13:. 37371467
Gómez, G.I., T.F. Alvear, D.A. Roa, A. Farias-Pasten, S.A. Vergara, L.A. Mellado, C.J. Martinez-Araya, J. Prieto-Villalobos, C. García-Rodríguez, N. Sánchez, J.C. Sáez, F.C. Ortíz, and J.A. Orellana. (2024). Cx43 hemichannels and panx1 channels contribute to ethanol-induced astrocyte dysfunction and damage. Biol Res 57: 15. 38576018
Gunasekar, S.K., L. Xie, and R. Sah. (2019). SWELL signalling in adipocytes: can fat ''feel'' fat? Adipocyte 8: 223-228. 31112068
He, Z., Y. Zhao, M.J. Rau, J.A.J. Fitzpatrick, R. Sah, H. Hu, and P. Yuan. (2023). Structural and functional analysis of human pannexin 2 channel. Nat Commun 14: 1712. 36973289
Hua, V.B., A.B. Chang, J.H. Tchieu, P.A. Nielsen, and M.H. Saier, Jr. (2003). Sequence and phylogenetic analysis of 4 TMS junctional proteins: Connexins, innexins, claudins and occludins. J. Mem. Biol. 194: 59-76. 14502443
Huang, Y.A. and S.D. Roper. (2010). Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells. J. Physiol. 588: 2343-2350. 20498227
Kandarian, B., J. Sethi, A. Wu, M. Baker, N. Yazdani, E. Kym, A. Sanchez, L. Edsall, T. Gaasterland, and E. Macagno. (2012). The medicinal leech genome encodes 21 innexin genes: different combinations are expressed by identified central neurons. Dev Genes Evol 222: 29-44. 22358128
Karatas, H., S.E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z.D. Sen, and T. Dalkara. (2013). Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339: 1092-1095. 23449592
Kasuya, G., T. Nakane, T. Yokoyama, Y. Jia, M. Inoue, K. Watanabe, R. Nakamura, T. Nishizawa, T. Kusakizako, A. Tsutsumi, H. Yanagisawa, N. Dohmae, M. Hattori, H. Ichijo, Z. Yan, M. Kikkawa, M. Shirouzu, R. Ishitani, and O. Nureki. (2018). Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat Struct Mol Biol 25: 797-804. 30127360
Kienitz, M.C., K. Bender, R. Dermietzel, L. Pott, and G. Zoidl. (2011). Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J. Biol. Chem. 286: 290-298. 21041301
Landesman, Y., T.W. White, T.A. Starich, J.E. Shaw, D.A. Goodenough and D.L. Paul (1999). Innexin-3 forms connexin-like intercellular channels. J. Cell Sci. 112: 2391-2396. 10381394
Lee, S.C., V. Arya, X. Yang, D.A. Volpe, and L. Zhang. (2017). Evaluation of transporters in drug development: Current status and contemporary issues. Adv Drug Deliv Rev 116: 100-118. 28760687
Lemes, J.B.P., K.F. Malange, N.S. Carvalho, A.F. Neves, M. Urban-Maldonado, P.R.G. Kempe, C.M. Nishijima, C.C. Fagundes, C.M.D.C. Lotufo, S.O. Suadicani, and C.A. Parada. (2024). Blocking Pannexin 1 Channels Alleviates Peripheral Inflammatory Pain but not Paclitaxel-Induced Neuropathy. J Integr Neurosci 23: 64. 38538230
Llobet, E., J.M. Tomás, and J.A. Bengoechea. (2008). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154: 3877-3886. 19047754
Locovei, S., E. Scemes, F. Qiu, D.C. Spray, and G. Dahl. (2007). Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 581: 483-488. 17240370
Maes, M., M.R. McGill, T.C. da Silva, C. Abels, M. Lebofsky, J.L. Weemhoff, T. Tiburcio, I. Veloso Alves Pereira, J. Willebrords, S. Crespo Yanguas, A. Farhood, A. Beschin, J.A. Van Ginderachter, S. Penuela, H. Jaeschke, B. Cogliati, and M. Vinken. (2017). Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 91: 2245-2261. 27826632
Metz, L.M. and M. Elvers. (2022). Pannexin-1 Activation by Phosphorylation Is Crucial for Platelet Aggregation and Thrombus Formation. Int J Mol Sci 23:. 35563450
Michalski, K., J.L. Syrjanen, E. Henze, J. Kumpf, H. Furukawa, and T. Kawate. (2020). The cryo-EM structure of a pannexin 1 reveals unique motifs for ion selection and inhibition. Elife 9:. [Epub: Ahead of Print] 32048993
Mim, C., G. Perkins, and G. Dahl. (2021). Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 153:. 33835130
Mukai, M., H. Kato, S. Hira, K. Nakamura, H. Kita, and S. Kobayashi. (2011). Innexin2 gap junctions in somatic support cells are required for cyst formation and for egg chamber formation in Drosophila. Mech Dev 128: 510-523. 22001874
Navis, K.E., C.Y. Fan, T. Trang, R.J. Thompson, and D.J. Derksen. (2020). Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci. [Epub: Ahead of Print] 32639715
Neves, J.H., P. Rezende-Teixeira, N.B. Palomino, and G.M. Machado-Santelli. (2021). Molecular and morphological approach to study the innexin gap junctions in. Open Biol 11: 210224. 34753320
Obot, P., A. Cibelli, J. Pan, L. Velíšek, J. Velíšková, and E. Scemes. (2024). Pannexin1 Mediates Early-Life Seizure-Induced Social Behavior Deficits. ASN Neuro 16: 2371164. 39024558
Ohbuchi, T. and H. Suzuki. (2018). Synchronized roles of pannexin and connexin in nasal mucosal epithelia. Eur Arch Otorhinolaryngol. [Epub: Ahead of Print] 29574598
Ohbuchi, T., F. Takenaga, N. Hohchi, T. Wakasugi, Y. Ueta, and H. Suzuki. (2014). Possible contribution of pannexin-1 to ATP release in human upper airway epithelia. Physiol Rep 2: e00227. 24744896
Oshima, A., K. Tani, and Y. Fujiyoshi. (2016). Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 7: 13681. 27905396
Oshima, A., T. Matsuzawa, K. Murata, K. Tani, and Y. Fujiyoshi. (2016). Hexadecameric structure of an invertebrate gap junction channel. J. Mol. Biol. [Epub: Ahead of Print] 26883891
Oviedo, N.J., and M. Levin. (2007). Gap junctions provide new links in left-right patterning. Cell. 129: 787-799. 17512395
Pehlivan, D., E. Karaca, H. Aydin, C.R. Beck, T. Gambin, D.M. Muzny, B. Bilge Geckinli, A. Karaman, S.N. Jhangiani, , R.A. Gibbs, and J.R. Lupski. (2014). Whole-exome sequencing links TMCO1 defect syndrome with cerebro-facio-thoracic dysplasia. Eur J Hum Genet 22: 1145-1148. 24424126
Penuela, S., R. Bhalla, X.Q. Gong, K.N. Cowan, S.J. Celetti, B.J. Cowan, D. Bai, Q. Shao, and D.W. Laird. (2007). Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120: 3772-3783. 17925379
Purohit, R. and A.K. Bera. (2021). Mutational effects of Pannexin 1 R217H depend on the carboxyl-terminus. Biochem. Biophys. Res. Commun. 548: 143-147. 33640607
Ruan, Z., I.J. Orozco, J. Du, and W. Lü. (2020). Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature. [Epub: Ahead of Print] 32494015
Sangaletti, R., G. Dahl, and L. Bianchi. (2014). Mechanosensitive unpaired innexin channels in C. elegans touch neurons. Am. J. Physiol. Cell Physiol. 307: C966-977. 25252948
Santavanond, J.P., Y.H. Chiu, R. Tixeira, Z. Liu, J.K.Y. Yap, K.W. Chen, C.L. Li, Y.R. Lu, J. Roncero-Carol, E. Hoijman, S.F. Rutter, B. Shi, G.F. Ryan, A.L. Hodge, S. Caruso, A.A. Baxter, D.C. Ozkocak, C. Johnson, Z.I. Day, A.J. Mayfosh, M.D. Hulett, T.K. Phan, G.K. Atkin-Smith, and I.K.H. Poon. (2024). The small molecule raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Cell Death Dis 15: 123. 38336804
Scemes, E. (2012). Nature of plasmalemmal functional "hemichannels". Biochim. Biophys. Acta. 1818: 1880-1883. 21703226
Shestopalov, V.I. and Y. Panchin. (2008). Pannexins and gap junction protein diversity. Cell Mol Life Sci 65: 376-394. 17982731
Silverman, W., S. Locovei, and G. Dahl. (2008). Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol. 295: C761-767. 18596212
Spagnol G., Sorgen PL. and Spray DC. (201). Structural order in Pannexin 1 cytoplasmic domains. Channels (Austin). 8(2):157-66. 24751934
Su, L., J. Zhang, J. Wang, X. Wang, E. Cao, C. Yang, Q. Sun, R. Sivakumar, and Z. Peng. (2023). Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 6: 889. 37644178
Suadicani, S.O., R. Iglesias, J. Wang, G. Dahl, D.C. Spray, and E. Scemes. (2012). ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 60: 1106-1116. 22499153
Suarez-Berumen, K., H. Collins-Hooper, A. Gromova, R. Meech, A. Sacco, P.R. Dash, R. Mitchell, V.I. Shestopalov, T.E. Woolley, S. Vaiyapuri, K. Patel, and H.P. Makarenkova. (2021). Pannexin 1 Regulates Skeletal Muscle Regeneration by Promoting Bleb-Based Myoblast Migration and Fusion Through a Novel Lipid Based Signaling Mechanism. Front Cell Dev Biol 9: 736813. 34676213
Suzuki-Kerr, H., K.L. Walker, M.H. Han, J.C. Lim, and P.J. Donaldson. (2022). Hyposmotic stress causes ATP release in a discrete zone within the outer cortex of rat lens. Mol Vis 28: 245-256. 36284672
Timonina, K., A. Kotova, and G. Zoidl. (2020). Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 10:. 32053881
Ullrich, F., S.M. Reincke, F.K. Voss, T. Stauber, and T.J. Jentsch. (2016). Inactivation and Anion Selectivity of Volume-Regulated VRAC Channels Depend on Carboxy-Terminal Residues of the First Extracellular Loop. J. Biol. Chem. [Epub: Ahead of Print] 27325695
Voss, F.K., F. Ullrich, J. Münch, K. Lazarow, D. Lutter, N. Mah, M.A. Andrade-Navarro, J.P. von Kries, T. Stauber, and T.J. Jentsch. (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344: 634-638. 24790029
Wang, Q. and S. Liu. (2021). Analysis of Hemichannels and Gap Junctions: Application and Extension of the Passive Transmembrane Ion Transport Model. Front Cell Neurosci 15: 596953. 33897368
White, T.W. and D.L. Paul (1999). Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61: 283-310. 10099690
Willebrords, J., M. Maes, I.V.A. Pereira, T.C. da Silva, V.M. Govoni, V.V. Lopes, S. Crespo Yanguas, V.I. Shestopalov, M.S. Nogueira, I.A. de Castro, A. Farhood, I. Mannaerts, L. van Grunsven, J. Akakpo, M. Lebofsky, H. Jaeschke, B. Cogliati, and M. Vinken. (2018). Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochim. Biophys. Acta. 1864: 819-830. 29246445
Yamada, T. and K. Strange. (2018). Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function. J Gen Physiol. [Epub: Ahead of Print] 29853476
Yen, M.R. and M.H. Saier, Jr. (2007). Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94: 5-14. 17507077
Yorgan, T.A., S. Peters, M. Amling, and T. Schinke. (2019). Osteoblast-specific expression of Panx3 is dispensable for postnatal bone remodeling. Bone 127: 155-163. 31202927
Zhang, H., S. Wang, Z. Zhang, M. Hou, C. Du, Z. Zhao, H. Vogel, Z. Li, K. Yan, X. Zhang, J. Lu, Y. Liang, S. Yuan, D. Wang, and H. Zhang. (2023). Cryo-EM structure of human heptameric pannexin 2 channel. Nat Commun 14: 1118. 36869038
Zhen, Y., V. Sørensen, C.S. Skjerpen, E.M. Haugsten, Y. Jin, S. Wälchli, S. Olsnes, and A. Wiedlocha. (2012). Nuclear import of exogenous FGF1 requires the ER-protein LRRC59 and the importins Kpnα1 and Kpnβ1. Traffic 13: 650-664. 22321063
Zhou, J., R. Mao, M. Wang, R. Long, L. Gao, X. Wang, L. Jin, and L. Zhu. (2024). A novel heterozygous missense variant of PANX1 causes human oocyte death and female infertility. J Ovarian Res 17: 180. 39232764
Zhou, P., M.M. Polovitskaya, and T.J. Jentsch. (2018). LRRC8 amino-termini influence pore properties and gating of volume-regulated VRAC anion channels. J. Biol. Chem. [Epub: Ahead of Print] 29925591