TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
1.A.26.1.1 | Mg2+, Co2+ transporter, MgtE/SLC41 (Smith et al. 1995). | Bacteria |
Bacillota | MgtE of Bacillus firmus (Q45121) |
1.A.26.1.2 | The Mg2+ transporter, MgtE. The crystal structure of the N-terminal hydrophilic domain has been determined to 2.3 Å resolution (Hattori et al., 2007) (>50% identical to 9.A.19.1.1), while the C-terminal transmembrane domain has been determined at 2.2 Å resolution (Takeda et al. 2014). The structure reveals a homodimer with the channel at the interface of the two subunits. There is a plug helix connecting the two domains, and the cytoplasmic domain possesses multiple Mg2+ binding sites at the cytoplasmic face that can bind Mg2+, Mn2+ and Ca2+. Dissociation of Mg2+ ions from the cytoplasmic domain induces structural changes in the cytoplasmic domain, leading to channel opening (Wang et al. 2023). Novel crystal structures of the Mg2+-bound MgtE cytoplasmic domains from two different bacterial species, Chryseobacterium hispalense and Clostridiales bacterium allowed identification of multiple Mg2+ binding sites, including ones that were not observed in the previous MgtE structure. These structures reveal the conservation and diversity of the cytoplasmic Mg2+ binding site in MgtE family proteins (Wang et al. 2023). | Bacteria |
Deinococcota | MgtE of Thermus thermophilus (Q5SMG8) |
1.A.26.1.3 | The MgtE Mg2+ transporter. Its expression can compensate a TrpM7 deficiency in vertebrate B-cells (Sahni et al. 2012). | Bacteria |
Bacillota | MgtE of Bacillus subtilis |
1.A.26.1.4 | Mg2+, Co2+ transporter, MgtE | Bacteria |
Pseudomonadota | MgtE of Providencia stuartii (Q52398) |
1.A.26.1.5 | MgtE homologue (function unknown) | Archaea |
Euryarchaeota | MgtE homologue of Methanobacterium thermoautotrophicum (O26717) |
1.A.26.1.6 | MgtE homologue of 469 AAs and 5 OR 6 TMSs (Pohland and Schneider 2019). | Bacteria |
Cyanobacteriota | MgtE of Prochlorococcus marinus |
1.A.26.1.7 | Ferrous iron and cobalt importer, FicI, of 454 aas and 5 C-termnal TMSs. FicI may be a secondary, energy-dependent carrier for iron uptake by S. oneidensis under high Fe2+ concentrations, but it can also take up cobalt (Bennett et al. 2018). | Bacteria |
Pseudomonadota | FicI of Shewanella oneidensis |
1.A.26.2.1 | Mg2+ transporter, SLC41A1 (10 TMSs; N- and C-termini inside) (Wabakken et al., 2003; Schmitz et al., 2007; Kolisek et al., 2008; Sponder et al. 2013). It has been reported to be a Na+:Mg2+ antiporter and therefore a Mg2+ efflux pump (Fleig et al. 2013). Regulated by Mg2+-dependent endosomal recycling through its N-terminal cytoplasmic domain (Mandt et al., 2011). Mutations result in a nephronophthisis (NPHP)-like ciliopathic phenotype (Hurd et al. 2013). Reviewed by Schäffers et al. 2018. | Eukaryota |
Metazoa, Chordata | SLC41A1 of Homo sapiens |
1.A.26.2.2 | Mg2+ transporter, SLC41A2 (11 TMSs with the N-terminus out and the C-terminus in) (Sahni et al. 2007). (63% identical to SLC41A1) See also (Wabakken et al., 2003; Schmitz et al., 2007) | Eukaryota |
Metazoa, Chordata | SLC41A2 of Homo sapiens |
1.A.26.2.3 | Solute carrier protein (SLC) 41A3. The gene is upregulated when mice are given a Mg2+ deficient diet (de Baaij et al. 2013). SLC41A3 knockout mice develop abnormal locomotor coordination. It is an established Mg2+ transporter involved in mitochondrial Mg2+ homeostasis (Schäffers et al. 2018). | Eukaryota |
Metazoa, Chordata | SLC41A3 of Homo sapiens |
1.A.26.2.4 | MagT or MgtE of 503 aas and 12 TMSs in a 3 + 6 + 3 arrangement. According to CDD, the domain order is: MgtE_N, a CBS pair (two repeats) and an MgtE domain. | Eukaryota |
Metazoa, Nematoda | MagT of Caenorhabditis elegans |
1.A.26.3.1 | MgtE of 251 aas and 5 TMSs | Archaea |
Euryarchaeota | MgtE of Natrinema gari |