TCDB is operated by the Saier Lab Bioinformatics Group

1.A.8 The Major Intrinsic Aquaporin Protein, (MIP) Family

The Major Intrinsic Protein (MIP) of the human lens of the eye (Aqp0), after which the MIP family was named, represents about 60% of the protein in the lens cell. In the native form, it is an aquaporin, but during lens development, it becomes proteolytically truncated. The channel, which normally houses 6-9 water molecules, becomes constricted so only three remain, and these are trapped in a closed conformation (Gonen et al., 2004a,b). These truncated tetramers form intercellular adhesive junctions (head to head), yielding a crystalline array that mediates lens formation with cells tightly packed as required to form a clear lens (Gonen and Walz, 2006). Aquaporin ion conductance properties are defined by the membrane environment, the protein structure, and the cell physiology (Henderson et al. 2022). Aqps in some organisms have been the subject of studies such as ticks. Gene expression of AQPs in different tick tissues and stages showed the highest expression levels in salivary glands and gut of adult female Haemaphysalis qinghaiensis. (Niu et al. 2022). AQPs are differentially expressed in various cardiovascular tissues of humans and participate in water transmembrane transport, cell migration, metabolism, and inflammatory responses (Shangzu et al. 2022). AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called 'aqua-glyceroporins') also transport glycerol and other small solutes. AQPs play roles in cancer cell growth, migration, invasion, and angiogenesis (Moon et al. 2022). In the bivalve, the invasive freshwater mussel Dreissena rostriformis, midbody-localized aquaporin mediates intercellular lumen expansion during early cleavage (Zieger et al. 2022). Aqp-mediated water distributions' in astrocytes under normal and pathological conditions have been reviewed (Zhou et al. 2022). Several methods have been developed for the measurement of water permeability, both in living cells and in tissues (Solenov et al. 2023). The importance of aquaporins in fetal developmenthas been reviewed (Martínez and Damiano 2023). The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions (Xiong et al. 2023). dbAQP-SNP is a database of missense single-nucleotide polymorphisms in human aquaporins (Dande and Sankararamakrishnan 2023). Raza et al. 2023 unveiled the complete genomic atlas of aquaporins across the genus Oryza. The genome-wide identification and gene expression analysis of sweet cherry aquaporins (Prunus avium L.) under abiotic stresses have been reported (Salvatierra et al. 2023). The genome-wide identification of Aqp family members related to spermatogenesis in turbot (Scophthalmus maximus) has been achieved (Wang et al. 2023).  Plasma membrane aquaporins of the PIP1 and PIP2 subfamilies facilitate hydrogen peroxide diffusion into plant roots (Israel et al. 2022). Roles of AQPs in epilepsy and seizure onset in humans have been discussed and reviewed (Bonosi et al. 2023).

Lipids crystallize with the protein (Gonen et al., 2005). Ion channel activity has been shown for Aquaporins 0, 1, and 6, Drosophila Big Brain and plant Nodulin-26 (Yool and Campbell, 2012).  Roles of aquaporins in human cancer have been reviewed (Pareek et al. 2013) as have their folding pathways (Klein et al. 2015). AQPs may act as transmembrane osmosensors in red cells, secretory granules and microorganisms (Hill and Shachar-Hill 2015).  MIP superfamly proteins and variations of their selectivity filters have been reviewed (Verma et al. 2015). Their evolution has been discussed (Ishibashi et al. 2017). AQPs have a variety of functions and are related to inner ear diseases such as Meniere's disease, sensorineural hearing loss, and presbycusis (Dong et al. 2019). AQPs are also important for male reproductive health (Carrageta et al. 2019).  The evolution of the aquaporin superfamily has been discussed (Ishibashi et al. 2020). The cellular functions of aquaporins are regulated mainly by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation, and protein interactions (Li et al. 2020). Aquaporins play roles in inflammation (Mariajoseph-Antony et al. 2020) and in various aspects of health and disease (Magouliotis et al. 2020). They play major roles in secretion of saliva by salivary glands, and their disruption can cause a variety of diseases (D'Agostino et al. 2020). Aquaporins in mamalian lungs have been reviewed (Yadav et al. 2020). Lineage-level divergence of copepod glycerol transporters and the emergence of isoform-specific trafficking regulation has been documented (Catalán-García et al. 2021). Aquaporins play key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis (Wagner et al. 2022). Aquaporins are gated, opening and closing to control water permeation (Ozu et al. 2022). They play roles in breast cancer progression and treatment (Charlestin et al. 2022). The function of aquaporins in gastrointestinal fluid absorption and secretion have been discussed (Calamita and Delporte 2023).

The MIP family is large and diverse, possessing thousands of members that form transmembrane channels. These channel proteins function in water, small carbohydrate (e.g., glycerol), urea, NH3, CO2, H2O2 and ion transport by energy-independent mechanisms. For example, the glycerol channel, FPS1p of Saccharomyces cerevisiae mediates uptake of arsenite and antimonite (Wysocki et al., 2001). Ion permeability appears to occur through a pathway different than that used for water/glycerol transport and may involve a channel at the 4 subunit interface rather than the channels through the subunits (Saparov et al., 2001). MIP family members are found ubiquitously in bacteria, archaea and eukaryotes. Phylogenetic clustering of the proteins is largely according to phylum of the organisms of origin, but one or more clusters are observed for each phylogenetic kingdom (plants, animals, yeast, bacteria and archaea) (Park and Saier, 1996). MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins.  One of the plant clusters includes only tonoplast (TIP) proteins, while another includes plasma membrane (PIP) proteins (de Paula Santos Martins et al. 2015). Aquaporins in Nicotiana tabacum have been tabulated, and their relationships to other Solanaceae species have been described (De Rosa et al. 2020). A genome analysis of Betula pendula (silver birch) identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs) (Venisse et al. 2021). Fungal X-intrinsic protein aquaporins from Trichoderma atroviride have been studied (Amira et al. 2021). In the parasidic helminthes, AQPs play  roles in promoting the transport of water, osmoregulation, uptake of nutrients, release of toxic metabolic products and transport of antiparasitic drugs (Wang and Ye 2020). Their involvement in diseases pathogenesis has been reviewed (Ala et al. 2021). In humans, AQP3, AQP7, AQP9, and AQP10, play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. The expression patterns of AQPs in different cancers as well as the relationship between the expression patterns and prognosis have been reviewed (Wang et al. 2022). The role of AQP5 in the biology of lung adenocarcinoma as well as its prognostic value have been reviewed (Jaskiewicz et al. 2023).

The known aquaporins cluster loosely together on a pylogenetic tree as do the known glycerol facilitators. MIP family proteins are believed to form aqueous pores that selectively allow passive transport of their solute(s) across the membrane with minimal apparent recognition. Aquaporins selectively transport water (but not glycerol) while glycerol facilitators selectively transport glycerol but not water. Some aquaporins can transport NH3 and CO2. Glycerol facilitators function as solute nonspecific channels, and may transport glycerol, dihydroxyacetone, propanediol, urea and other small neutral molecules in physiologically important processes. Some members of the family, including the yeast Fps1 protein (TC #1.A.8.5.1) and tobacco NtTIPa (TC #1.A.8.10.2) may transport both water and small solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: narrow channels conduct water, whilst wider channels permit passage of solutes. Substrate discrimination depends on a complex interplay between the solute, pore size, and polarity (Kitchen et al. 2019). Brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow via aquaporins may not fully describe transmembrane fluid transport in the brain (MacAulay 2021). Aquaporins are essential to maintain motility and membrane lipid architecture during mammalian sperm capacitation (Delgado-Bermúdez et al. 2021). The effects of Aloe-Emodin on the expression of brain aquaporins and secretion of neurotrophic factors has been reported (Liu et al. 2023). AQPs are expressed in various parts of the body, and the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma have been reviewed (Bhattacharjee et al. 2024).

Calamita et al. 2018 review the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas that are involved in energy metabolism. The review also summarizes the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed (Calamita et al. 2018). Jain et al. 2018 have shown that an intra-helical salt-bridge in the Loop E half-helix can influence the transport properties of AQP1 and GlpF channels.  AQPs are homotetramers with two conserved asparagine-proline-alanine (NPA) motifs embedding in the plasma membrane. The cellular functions of aquaporins are regulated mainly by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation, and protein interactions. Aquaporins, in particular, AQP2, play important roles in some disease conditions such as water loss and gain (Li et al. 2020). The expression of AQP-1, -3, -4, -5, -8 and -9 were documented in the digestive system, where these six AQP isoforms serve essential roles including mediating the transmembrane water transport and regulating the secretion of gastrointestinal (GI) fluids, consequently facilitating the digestion and absorption of GI contents (Liao et al. 2021). The expression levels of AQPs are controlled by various factors, and AQPs can stimulate various signaling pathways; however, aberrant expression of AQPs in the GI tracts are associated with the initiation and development of numerous diseases (Liao et al. 2021). Altered iris aquaporin expression and aqueous humor osmolality in glaucoma have been compared (Huang et al. 2021).

Zardoya and Villalba (2001) have conducted phylogenetic analyses of the MIP family, analyzing 153 homologues. They divided the proteins into six major 'paralogous' groups: (1) GLPs, or glycerol-transporting channel proteins, which include mammalian AQP3, AQP7, and AQP9, several nematode paralogues, a yeast paralogue, and Escherichia coli GLP; (2) AQPs, or aquaporins, which include metazoan AQP0, AQP1, AQP2, AQP4, AQP5, and AQP6; (3) PIPs, or plasma membrane intrinsic proteins of plants, which include PIP1 and PIP2; (4) TIPs, or tonoplast intrinsic proteins of plants, which include αTIP, γTIP, and δTIP; (5) NODs, or nodulins of plants; and (6) AQP8s, or metazoan aquaporin 8 proteins. Of these groups, AQPs, PIPs, and TIPs cluster together as noted above. Wild and domesticated olive species have 52 and 79 genes encoding full-length AQP sequences, respectively (Faize et al. 2020). They fall into five established subfamilies: PIP, TIP, NIP, SIP, and XIP and their substrate specificities and cellular localizations were predicted (Faize et al. 2020). AQPs' selectivities are not exclusively shaped by pore-lining residues but are also determined by the relative arrangement of transmembrane helices (Gössweiner-Mohr et al. 2022). Aquaporins in astrocytes have been reviewed (Zhou et al. 2022). The diverse range of substrates conducted by aquaporin family members, particularly those of human origin, have been reviewed (Sachdeva et al. 2022), and current knowledge of the AQP interactomes and the molecular basis and functional significance of these protein-protein interactions in health and diseases have also been reviewed (Törnroth-Horsefield et al. 2022). Aquaporins in the digestive system have similarly been reviewed (Ye et al. 2023). Their functions and mechanisms have also been reviewed (Calamita 2023).

In agreement with their divergent sequences, human AQP1-9 have very different physiological functions. They are involved in (1) nephrogenic diabetes insipidus, (2) brain water balance and hearing and (3) salivary secretion (Li and Verkman, 2001).  Bacterial homologues also have diverse functions.  Two proteins in E. coli function as water and glycerol transporters, respectively.  Lactobacillus plantarum has 6 homologues, some of which transport water, glycerol and dihydroxyacetone, and some which transporter these compounds as well as D,L-lactic acid (Bienert et al. 2013).  The pH sensitivities of Aqp0 channels in lenses of tetraploid and diploid teleosts have been reported (Chauvigné et al. 2015).  In the heart, AQPs are implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity (Verkerk et al. 2019). Because of their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. Calamita and Delporte 2021 provided an overview of the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and the endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism is also addressed. Aquaporins (AQPs) are involved in autoimmune diseases including neuromyelitis optica, Sjogren's syndrome and rheumatoid arthritis. Both autoantibodies against AQPs and altered expression and/or trafficking of AQPs in various tissue cell types as well as inflammatory cells play key roles in pathogenesis of autoimmune diseases. Detection of autoantibodies against AQP4 in the central nervous system has paved the way for a deeper understanding in disease pathophysiology (Delporte and Soyfoo 2022).

Several reports of MIP family proteins transporting ions may or may not be physiologically significant. For example, the influx of arsenite and antimonite via the Fps1 protein into yeast cells is well documented (Wysocki et al., 2001). Similarly, these compounds are taken up via aquaporins in Leishmania (Gourbal et al., 2004). Moreover, AQP6 of renal epithelia have been reported to transport anions at low pH (Yasui et al., 1999). Demonstration of the involvement of the cyanobacterial channel protein (TC #1.A.8.4.1) in copper homeostasis suggests that it may transport Cu2+. Finally, Yang et al. (2005) showed that arsenite exists the Mesorhizobium meliloti cell by downhill movement through AqpS (1.A.8.15.1). The physiological functions of many MIP family proteins are unknown. Differential expression of aquaporin genes and the influence of environmental hypertonicity on their expression in juveniles of air-breathing stinging catfish (Heteropneustes fossilis) has been examined (Chutia et al. 2022). The results show that AQPs play crucial roles in maintaining the water and ionic balances under anisotonic conditions, even at the early developmental stages of stinging catfish.  In humans, AQP1 is present in myoepithelial cells and in endothelial cells of small blood vessels; AQP3 shows basolateral plasmamembrane localization in glandular endpieces, and AQP5 is localized at the apical cytomembrane in serous and mucous glandular cells and at the lateral membrane in serous cells (Stoeckelhuber et al. 2023).

MIP family channels consist of homotetramers (e.g., GlpF of E. coli; TC #1.A.8.1.1, AqpZ of E. coli; TC #1.A.8.3.1, and MIP or Aqp0 of Bos taurus; TC #1.A.8.8.1). Each subunit spans the membrane six times as putative α-helices and arose from a 3-spanner-encoding genetic element by a tandem, intragenic duplication event. The two halves of the proteins are therefore of opposite orientation in the membrane. However, a well-conserved region between TMSs 2 and 3 and TMSs 5 and 6 dip into the membrane, each loop forming a half TMS. A voltage-related gating mechanism involving the conserved arginine of the channel's main constriction was captured for human aquaporins through molecular dynamics studies. Mom et al. 2020 showed that this voltage-gating is probably conserved among members of this family and that the underlying mechanism may explain part of plant AQPs diversity when contextualized to high ionic concentrations provoked by drought.

Several MIPs within all domains of life have been shown to facilitate the diffusion of reduced and non-charged species of the metalloids silicon, boron, arsenic and antimony (Bienert et al., 2008). Metalloids encompass a group of biologically important elements ranging from the essential to the highly toxic. Consequently, all organisms require efficient membrane transport systems to control the exchange of metalloids with the environment. Genetic evidence has demonstrated a crucial role for specific MIPs in metalloid homeostasis (Bienert et al., 2008). Permeation through each monomer of a tetrameric Aqp is consistent with closed and open states, introducing the term 'gating mechanism' into the field (Ozu et al. 2022).

The crystal structure of the glycerol facilitator of E. coli was solved at 2.2 Å resolution (Fu et al., 2000). Glycerol molecules line up in single file within the amphipathic channel. In the narrow selectivity filter of the channel, the glycerol alkyl backbone is wedged against a hydrophobic corner, and successive hydroxyl groups form hydrogen bonds with a pair of acceptor and donor atoms. The two conserved D-P-A motifs in the loops between TMSs 2 and 3 and TMSs 5 and 6 form the interface between the two duplicated halves of each subunit. Thus each half of the protein forms 3.5 TMSs surrounding the channel. The structure explains why GlpF is selectively permeable to straight chain carbohydrates, and why water and ions are excluded. Aquaporin-1 (AQP1) and the bacterial glycerol facilitator, GlpF can transport O2, CO2, NH3, glycerol, urea, and water to varying degrees. For small solutes permeating through AQP1, a remarkable anticorrelation between permeability and solute hydrophobicity was observed whereas the opposite trend was observed for permeation through the membrane (Hub and Groot, 2008). AQP1 is thus a selective filter for small polar solutes, whereas GlpF is highly permeable to small solutes and less permeable to larger solutes. 

Aquaporin-1 (Aqp1) from the human red blood cell has been solved by x-ray crystallography to 3.8 Å resolution (Murata et al., 2000). The aqueous pathway is lined with conserved hydrophobic residues that permit rapid water transport. Water selectivity is due to a constriction of the inner pore diameter to about 3 Å over the span of a single residue, superficially similar to that in the glycerol facilitator of E. coli. The role of aquaporins in corneal healing post chemical injury has been described (Bhend et al. 2023).

AqpZ, a homotetramer (tAqpZ) of four water-conducting channels that facilitate rapid water movements across the plasma membrane of E. coli, has been solved to 3.2 Å resolution. All channel-lining residues in the four monomeric channels are found orientated in nearly identical positions with one marked exception at the narrowest channel constriction, where the side chain of a conserved Arg-189 adopts two distinct conformational orientations. In one of the four monomers, the guanidino group of Arg-189 points toward the periplasmic vestibule, opening up the constriction to accommodate the binding of a water molecule through a tridentate H-bond. In the other three monomers, the Arg-189 guanidino group bends over to form an H-bond with carbonyl oxygen of Thr-183 occluding the channel. Therefore, the tAqpZ structure reveals two distinct Arg-189 conformations associated with water permeation through the channel constrictions. Alternating between the two Arg-189 conformations disrupts continuous flow of water, thus regulating the open probability of the water pore. Further, the difference in Arg-189 displacements is correlated with a strong electron density found between the first transmembrane helices of two open channels, suggesting that the observed Arg-189 conformations are stabilized by asymmetrical subunit interactions in tAqpZ (Jiang et al., 2006). 

Plants exhibits high diversity in aquaporin isoforms and broadly classified into five different subfamilies on the basis of phylogenetic distribution and subcellular occurrence: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like proteins (NIPs), small basic intrinsic proteins (SIPs) and uncharacterized intrinsic proteins (XIPs) (Singh et al. 2020). The gating mechanism of aquaporin channels is regulated by post-translational modifications such as phosphorylation, methylation, acetylation, glycosylation, and deamination. Aquaporin expression and transport functions are also modulated by the various phytohormone-mediated signalling in plants. Combined physiology and transcriptome analyses revealed the role of aquaporins in regulating hydraulic conductance in roots and leaves. Aquaporin activities during solute transport, plant development, abiotic stress response, and plant-microbe symbiosis have been reviewed (Singh et al. 2020). Plant aquaporin gating is reversed by phosphorylation on intracellular loop D as estimated using evidence from molecular dynamics simulations (Mom et al. 2023).


The 3-D structures of the open and closed forms of plant aquaporins, PIP1 and PIP2, have been solved (Törnroth-Horsefield et al., 2006). In the closed conformation, loop D caps the channel from the cytoplasm and thereby occludes the pore. In the open conformation, loop D is displaced up to 16 Å, and this movement opens a hydrophobic gate blocking the channel entrance from the cytoplasm. These results reveal a molecular gating mechanism which appears conserved throughout all plant plasma membrane aquaporins. In plants it regulates water intake/export in response to water availability and cytoplasmic pH during anoxia (Törnroth-Horsefield et al., 2006).

43 AQP genes were identified in the forage crop Medicago sativa. The MsAQP proteins clustered into four subfamilies based on sequence similarity and phylogenetic relationship, including 17 TIPs, 14 NIPs, 9 PIPs and 3 SIPs (Luo et al. 2022). Analyses on cis-acting elements in the promoter regions of MsAQP genes revealed the presence of multiple and diverse stress-responsive and hormone-responsive cis-acting elements. By analyzing the gene expression data of M. truncatula, ten representative MtAQP genes were responsive to NaCl or drought stress. By analyzing the sequence similarity and phylogenetic relationship, the corresponding ten salt- or drought-responsive AQP genes in M. sativa, including three MsTIPs, three MsPIPs and four MsNIPs. The qPCRs showed that the relative expression levels of these ten MsAQP genes responded differently to NaCl or drought treatment in M. sativa. Most MsAQP genes were preferentially expressed in roots or leaves (Luo et al. 2022).

The MIP superfamily includes three functional subfamilies: aquaporins, aquaglyceroporins and S-aquaporins. (1) The aquaporins (AQPs) are water selective. (2) The aquaglyceroporins are permeable to water, but also to other small uncharged molecules. (3) The third subfamily, with little conserved amino acid sequences around the NPA boxes, include 'superaquaporins' (S-aquaporins).The phylogeny of insect MIP family channels has been published (Finn et al. 2015). The arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration (Kourghi et al. 2018).

13 isoforms of mammalian aquaporins (AQP0 - AQP12),are known, nine of which localize to different parts of the renal tubular epithelium.  Additional transport functions of renal AQPs (AQP3, AQP6, AQP7 and AQP8) are known. Aquaglyceroporins are most probably key elements in the renal regulation of nitrogen balance and maintenance of the correct pH of body fluids (Michalek 2016). In human sperm, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece (Pellavio and Laforenza 2021). AQPs are important for the normal functioning of sperm to ensure normal fertility. AQP3, AQP7 and AQP11 are involved in sperm volume regulation, a key role for fertility because osmoadaptation protects the sperm against swelling and tail bending that could affect sperm motility. AQP8 has a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore plays a role in the response to oxidative stress (Pellavio and Laforenza 2021). 

Otitis media (OM) refers to inflammatory diseases of the middle ear (ME), regardless of cause or pathological mechanism. The expression of aquaporins (AQPs) in the ME and Eustachian tube (ET) is relevant. Eleven types of AQPs, AQP1 to AQP11, have been found to be expressed in mammalian ME and ET (Jung et al. 2017). The distribution and levels of expression of AQPs depend on the presence or absence of inflammation. Fluid accumulation in the ME and ET is a common mechanism for all types of OM, causing edema in the tissue and inducing inflammation involving various AQPs. The expression patterns of several AQPs, especially AQP1, 4 and 5, may have immunological functions in OM.

Some classes of AQPs conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila big brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1 (Kourghi et al. 2017). Classification of AQPs into three categories (orthodox AQPs, aquaglyceroporins and superaquaporins) is based on their sequence similarities and substrate selectivities. In the male reproductive tract of mammals, most AQPs (except AQP6 and AQP12) are found in different organs (including testis, efferent ducts and epididymis). AQP1 and AQP9 are the most abundant AQPs in the efferent ducts and epididymis and play a crucial role for the secretion/reabsorption dynamics of luminal fluid during sperm transport and maturation. AQP3, AQP7, AQP8 and AQP11 are the most abundant AQPs in sperm and are involved in the regulation of their volumes, which is required for the differentiation of spermatids into spermatozoa during spermatogenesis, as well as in sperm transit along environments of different osmolality (male and female reproductive tracts). Mounting evidence indicates that AQP3, AQP7 and AQP11 are involved in cryotolerance as well as the sperm response to variations of osmolality and to freeze-thawing procedures (Yeste et al. 2017).

In mammals, aquaporins are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas and are involved in pancreatic fluid and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer (Arsenijevic et al. 2019).

Mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. Jung et al. 2020 reviewed the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.

Water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth (Kordowitzki et al. 2020). Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved in the storage of spermatozoa. Aquaporins are relevant for seveeral physiological functions in the female reproductive system, and they are relevant to different pathologies in the female reproductive system. Four Impatiens walleriana aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1, have been characteerized (Đurić et al. 2021). Drought stress  affected the aquaporin expression in I. walleriana leaves, which was up- or downregulated depending on stress intensity. Expression of IwPIP2;7 was the most affected of these four aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, IwPIP2;7 expression significantly decreased and increased, respectively. Aquaporins IwPIP1;4 and IwTIP4;1 had lower expression than IwPIP2;7, with moderate expression changes in response to drought and recovery, while IwPIP2;2 expression was of significance only in recovered plants (Đurić et al. 2021).

Humans contain 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. They are involved in a wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorders, epilepsy, skin diseases, metabolic syndrome, and even cardiac diseases. AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. In a review, Azad et al. 2021 examine the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. AQP structures, tissue-specific distributions and physiological relevance, functional diversity and regulation were considered. Human AQPs play roles in edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions (da Silva et al. 2022). The 13 AQPs draw cell lineage-specific expression patterns related to cell native functions. Compelling evidence indicates that AQPs have potential as biomarkers and targets for therapeutic intervention. AQP9 is most expressed in the liver, influencing general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities. AQP9 levels in other tissues are altered in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders (da Silva et al. 2022). Aqp activities are sensitive to mercury ions (Hg2+). While most aquaporins are inhibited by Hg2+, several are activated. Xie et al. 2022 investigated AqpZ of E. coli (TC# 1.A.8.3.1) inhibition and human AQP6 (TC# 1.A.8.8.4) activation. Based on the structure of the Hg-AqpZ complex, they found that pore closure was caused by mercury-induced conformational changes of the key residue R189 in the selectivity filter region, while pore opening was caused by conformational changes of residues H181 and R196 in the selectivity filter region in AQP6. Both conformational changes were caused by the disruption of the H-bond network of R189/R196 by mercury (Xie et al. 2022). 

As small ectotherms, insects need to cope with the challenges of winter cold by regulating their water content. Aquaporins (AQPs) are key players to enhance cold resistance by mediating essential homeostatic processes in many animals but remain poorly characterized in insects. Agriphila aeneociliella is a winter wheat pest in China, and its early-stage larvae have strong tolerance to low temperature stress. Six AQP genes were identified, which belong to five AQP subfamilies (RPIP, Eglp, AQP12L, PRIP, DRIP) (Zhao et al. 2023). All of them contained six hydrophobic TMSs and two relatively conservative Asparagine-Proline-Alanine motifs. The three-dimensional homology modeling showed that the six TMSs folded into an hourglass-like shape, and the imperceptible replacement of four ar/R residues in the contraction region had critical effects on changing the pore size of the channels. Moreover, the transcript levels of AaAQPs 1, 3, and 6 increased significantly with the treatment time below 0 degrees C. Combined with the results of pore radius variations, it was suggested that AaAQP1 and AaAQP3 are the key anti-hypothermia proteins in A. aeneociliella by regulating rapid cell dehydration and allowing the influx of extracellular cold resistance molecules, thus avoiding death in winter.

The generalized transport reaction for channel proteins of the MIP family is:

Reversible H2O (out) → H2O (in) (e.g., aquaporins)


Reversible solute (out) → solute (in) (e.g., glycerol or H2O2 facilitators).

This family belongs to the: Major Intrinsic Protein (MIP) Superfamily.

References associated with 1.A.8 family:

Bienert, G.P., M.D. Schüssler, and T.P. Jahn. (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 33: 20-26. 18068370
Aggeli, I.K., A. Kapogiannatou, F. Paraskevopoulou, and C. Gaitanaki. (2021). Differential response of cardiac aquaporins to hyperosmotic stress; salutary role of AQP1 against the induced apoptosis. Eur Rev Med Pharmacol Sci 25: 313-325. 33506920
Ahmadpour, D., E. Maciaszczyk-Dziubinska, R. Babazadeh, S. Dahal, M. Migocka, M. Andersson, R. Wysocki, M.J. Tamás, and S. Hohmann. (2016). The MAP kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Lett. [Epub: Ahead of Print] 27607883
Ahmed, J., A. Ismail, L. Ding, A.J. Yool, and F. Chaumont. (2023). A new method to measure aquaporin-facilitated membrane diffusion of hydrogen peroxide and cations in plant suspension cells. Plant Cell Environ. [Epub: Ahead of Print] 37946673
Ahmed, S. and Y. Kim. (2019). An aquaporin mediates cell shape change required for cellular immunity in the beet armyworm, Spodoptera exigua. Sci Rep 9: 4988. 30899076
Ala, M., R. Mohammad Jafari, A. Hajiabbasi, and A.R. Dehpour. (2021). Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 236: 6115-6135. 33559160
Amanzougaghene, N., S. Tajeri, S. Yalaoui, A. Lorthiois, V. Soulard, A. Gego, A. Rametti, V. Risco-Castillo, A. Moreno, M. Tefit, G.J. van Gemert, R.W. Sauerwein, J.C. Vaillant, P. Ravassard, J.L. Pérignon, P. Froissard, D. Mazier, and J.F. Franetich. (2021). The Host Protein Aquaporin-9 is Required for Efficient Sporozoite Entry into Human Hepatocytes. Front Cell Infect Microbiol 11: 704662. 34268141
Amezcua-Romero JC., Pantoja O. and Vera-Estrella R. (2010). Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem. 285(22):16739-47. 20332086
Amira, M.B., M. Faize, M. Karlsson, M. Dubey, M. Frąc, J. Panek, B. Fumanal, A. Gousset-Dupont, J.L. Julien, H. Chaar, D. Auguin, R. Mom, P. Label, and J.S. Venisse. (2021). Fungal -Intrinsic Protein Aquaporin from : Structural and Functional Considerations. Biomolecules 11:. 33672420
Araya-Secchi, R., J.A. Garate, D.S. Holmes, and T. Perez-Acle. (2011). Molecular dynamics study of the archaeal aquaporin AqpM. BMC Genomics 12Suppl4: S8. 22369250
Arsenijevic, T., J. Perret, J.L. Van Laethem, and C. Delporte. (2019). Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 20:. 31614661
Assentoft, M., S. Kaptan, H.P. Schneider, J.W. Deitmer, B.L. de Groot, and N. MacAulay. (2016). Aquaporin 4 as a NH3 Channel. J. Biol. Chem. [Epub: Ahead of Print] 27435677
Au, C.G., T.L. Butler, J.R. Egan, S.T. Cooper, H.P. Lo, A.G. Compton, K.N. North, and D.S. Winlaw. (2008). Changes in skeletal muscle expression of AQP1 and AQP4 in dystrophinopathy and dysferlinopathy patients. Acta Neuropathol 116: 235-246. 18392839
Ayadi, M., D. Cavez, N. Miled, F. Chaumont, and K. Masmoudi. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol. Biochem 49: 1029-1039. 21723739
Azad, A.K., T. Raihan, J. Ahmed, A. Hakim, T.H. Emon, and P.A. Chowdhury. (2021). Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 12: 654865. 33796134
Balasaheb Karle, S., K. Kumar, S. Srivastava, and P. Suprasanna. (2020). Cloning, in silico characterization and expression analysis of TIP subfamily from rice (Oryza sativa L.). Gene 761: 145043. 32777530
Beese-Sims, S.E., J. Lee, and D.E. Levin. (2011). Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast 28: 815-819. 22030956
Beitz, E., S. Pavlovic-Djuranovic, M. Yasui, P. Agre, and J.E. Schultz. (2004). Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc. Natl. Acad. Sci. USA 101: 1153-1158. 14734807
Bellati, J., K. Alleva, G. Soto, V. Vitali, C. Jozefkowicz, and G. Amodeo. (2010). Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol. Biol. 74: 105-118. 20593222
Ben Amira, M., R. Mom, D. Lopez, H. Chaar, A. Khouaja, V. Pujade-Renaud, B. Fumanal, A. Gousset-Dupont, G. Bronner, P. Label, J.L. Julien, M.A. Triki, D. Auguin, and J.S. Venisse. (2018). MIP diversity from Trichoderma: Structural considerations and transcriptional modulation during mycoparasitic association with Fusarium solani olive trees. PLoS One 13: e0193760. 29543834
Berland, S., T.L. Toft-Bertelsen, I. Aukrust, J. Byska, M. Vaudel, L.A. Bindoff, N. MacAulay, and G. Houge. (2018). A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance. Cold Spring Harb Mol Case Stud 4:. 29437797
Berliner, J.A., M.A. Lam, E. Najafi, S.J. Hemley, L.E. Bilston, and M.A. Stoodley. (2023). Aquaporin-4 expression and modulation in a rat model of post-traumatic syringomyelia. Sci Rep 13: 9662. 37316571
Berny, M.C., D. Gilis, M. Rooman, and F. Chaumont. (2016). Single mutations in the transmembrane domains of maize plasma membrane aquaporins affect the activity of the monomers within a heterotetramer. Mol Plant. [Epub: Ahead of Print] 27109604
Berthaud A., Manzi J., Perez J. and Mangenot S. (2012). Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering. J Am Chem Soc. 134(24):10080-8. 22621369
Berthaud, A., F. Quemeneur, M. Deforet, P. Bassereau, F. Brochard-Wyart, and S. Mangenot. (2015). Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter. [Epub: Ahead of Print] 26662491
Bertl, A., and R. Kaldenhoff. (2007). Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett. 581: 5413-5417. 17967420
Bhattacharjee, A., A. Jana, S. Bhattacharjee, S. Mitra, S. De, B.S. Alghamdi, M.Z. Alam, A.B. Mahmoud, Z. Al Shareef, W.M. Abdel-Rahman, C. Woon-Khiong, A. Alexiou, M. Papadakis, and G.M. Ashraf. (2024). The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 22: 106. 38336645
Bhend, M.E., D. Kempuraj, N.R. Sinha, S. Gupta, and R.R. Mohan. (2023). Role of aquaporins in corneal healing post chemical injury. Exp Eye Res 228: 109390. [Epub: Ahead of Print] 36696947
Bienert, G.P., A.L. Moller, K.A. Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring, and T.P. Jahn. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. 17105724
Bienert, G.P., B. Desguin, F. Chaumont, and P. Hols. (2013). Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem. J. 454: 559-570. 23799297
Bienert, M.D., T.A. Diehn, N. Richet, F. Chaumont, and G.P. Bienert. (2018). Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function. Front Plant Sci 9: 382. 29632543
Bonilla-Correal, S., F. Noto, E. Garcia-Bonavila, J.E. Rodríguez-Gil, M. Yeste, and J. Miro. (2017). First evidence for the presence of aquaporins in stallion sperm. Reprod Domest Anim 52Suppl4: 61-64. 29052325
Bonosi, L., U.E. Benigno, S. Musso, K. Giardina, R.M. Gerardi, L. Brunasso, R. Costanzo, F. Paolini, F. Buscemi, C. Avallone, V. Gulino, D.G. Iacopino, and R. Maugeri. (2023). The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 24:. 37569297
Bui, L.C., C. Tomkiewicz, S. Pierre, A. Chevallier, R. Barouki, and X. Coumoul. (2016). Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicol Sci 149: 158-166. 26454884
Buzhynskyy, N., J.F. Girmens, W. Faigle, S. Scheuring. (2007). Human cataract lens membrane at subnanometer resolution. J. Mol. Biol. 374: 162-169. 17920625
Byrt, C.S., M. Zhao, M. Kourghi, J. Bose, S.W. Henderson, J. Qiu, M. Gilliham, C. Schultz, M. Schwarz, S.A. Ramesh, A. Yool, and S. Tyerman. (2017). Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca and pH. Plant Cell Environ 40: 802-815. 27620834
Calamita, G. (2023). Advances in Aquaporins. Cells 12:. 36672238
Calamita, G. and C. Delporte. (2021). Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 188: 20-34. 33689852
Calamita, G. and C. Delporte. (2023). Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 12:. 37681902
Calamita, G., B. Kempf, M. Bonhivers, W.R. Bishai, E. Bremer, and P. Agre. (1998). Regulation of the Escherichia coli water channel gene aqpZ. Proc. Natl. Acad. Sci. USA 95: 3627-3631. 9520416
Calamita, G., J. Perret, and C. Delporte. (2018). Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 9: 851. 30042691
Calamita. G. (2000). The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37: 254-262. 10931322
Cao, Y., H. Wei, S. Jiang, T. Lu, P. Nie, C. Yang, N. Liu, I. Lee, X. Meng, W. Wang, and Z. Yuan. (2023). Effect of AQP4 and its palmitoylation on the permeability of exogenous reactive oxygen species: Insights from computational study. Int J Biol Macromol 127568. [Epub: Ahead of Print] 37866582
Carbrey, J.M., D.A. Gorelick-Feldman, D. Kozono, J. Praetorius, S. Nielsen, and P. Agre. (2003). Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 100: 2945-2950. 12594337
Carbrey, J.M., M. Bonhivers, J.D. Boeke, and P. Agre. (2001). Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc. Natl. Acad. Sci. USA 98: 1000-1005. 11158584
Carrageta, D.F., R.L. Bernardino, G. Soveral, G. Calamita, M.G. Alves, and P.F. Oliveira. (2019). Aquaporins and male (in)fertility: Expression and role throughout the male reproductive tract. Arch Biochem Biophys 108222. [Epub: Ahead of Print] 31816311
Catalán-García, M., F. Chauvigné, J.A. Stavang, F. Nilsen, J. Cerdà, and R.N. Finn. (2021). Lineage-level divergence of copepod glycerol transporters and the emergence of isoform-specific trafficking regulation. Commun Biol 4: 643. 34059783
Charlestin, V., D. Fulkerson, C.E. Arias Matus, Z.T. Walker, K. Carthy, and L.E. Littlepage. (2022). Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 12: 988119. 36212456
Chau, D., K. Ng, T.S. Chan, Y.Y. Cheng, B. Fong, S. Tam, Y.L. Kwong, and E. Tse. (2015). Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol 8: 46. 25953102
Chau, S., A. Fujii, Y. Wang, A. Vandebroek, W. Goda, M. Yasui, and Y. Abe. (2021). Di-lysine motif-like sequences formed by deleting the C-terminal domain of aquaporin-4 prevent its trafficking to the plasma membrane. Genes Cells. [Epub: Ahead of Print] 33474763
Chauvigne F., Zapater C., Stavang JA., Taranger GL., Cerda J. and Finn RN. (2015). The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J. 29(5):2172-84. 25667219
Cheng, C., J. Gao, X. Sun, and R.T. Mathias. (2021). Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance. Front Physiol 12: 772276. 34899394
Chevalier, A.S. and F. Chaumont. (2015). The LxxxA motif in the third transmembrane helix of the maize aquaporin ZmPIP2;5 acts as an ER export signal. Plant Signal Behav 10: e990845. 25897469
Chiba, Y., N. Mitani, N. Yamaji, and J.F. Ma. (2009). HvLsi1 is a silicon influx transporter in barley. Plant J. 57: 810-818. 18980663
Choi, W.G., and D.M. Roberts. (2007). Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J. Biol. Chem. 282: 24209-24218. 17584741
Chrispeels, M.J. and C. Maurel. (1994). Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 105: 9-13. 7518091
Chutia, P., N. Saha, M. Das, and L.M. Goswami. (2022). Differential expression of aquaporin genes and the influence of environmental hypertonicity on their expression in juveniles of air-breathing stinging catfish (Heteropneustes fossilis). Comp Biochem Physiol A Mol Integr Physiol 274: 111314. 36096299
Cui, Y. and D.A. Bastien. (2011). Water transport in human aquaporin-4: Molecular dynamics (MD) simulations. Biochem. Biophys. Res. Commun. 412: 654-659. 21856282
D''Agostino, C., D. Parisis, C. Chivasso, M. Hajiabbas, M.S. Soyfoo, and C. Delporte. (2023). Aquaporin-5 Dynamic Regulation. Int J Mol Sci 24:. 36768212
D''Agostino, C., O.A. Elkashty, C. Chivasso, J. Perret, S.D. Tran, and C. Delporte. (2020). Insight into Salivary Gland Aquaporins. Cells 9:. 32630469
da Silva, I.V., S. Garra, G. Calamita, and G. Soveral. (2022). The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 12:. 35883453
Dai, Y.H., B.R. Liu, H.J. Chiang, and H.J. Lee. (2011). Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene 489: 89-97. 21925248
Dande, R. and R. Sankararamakrishnan. (2023). dbAQP-SNP: a database of missense single-nucleotide polymorphisms in human aquaporins. Database (Oxford) 2023:. 36913438
Danielli, M., J. Marrone, A.M. Capiglioni, and R.A. Marinelli. (2019). Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis. Free Radic Biol Med 131: 370-375. 30579780
Daniels, M.J., F. Chaumont, T.E. Mirkov, and M.J. Chrispeels. (1996). Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8: 587-599. 8624437
Danielsson, A., F. Pontén, L. Fagerberg, B.M. Hallström, J.M. Schwenk, M. Uhlén, O. Korsgren, and C. Lindskog. (2014). The human pancreas proteome defined by transcriptomics and antibody-based profiling. PLoS One 9: e115421. 25546435
de Paula Santos Martins, C., A.M. Pedrosa, D. Du, L.P. Gonçalves, Q. Yu, F.G. Gmitter, Jr, and M.G. Costa. (2015). Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoS One 10: e0138786. 26397813
De Rosa, A., A. Watson-Lazowski, J.R. Evans, and M. Groszmann. (2020). Genome-wide identification and characterisation of Aquaporins in Nicotiana tabacum and their relationships with other Solanaceae species. BMC Plant Biol 20: 266. 32517797
Dean, R.M., R.L. Rivers, M.L. Zeide, and D.M. Roberts. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347-353. 9890916
Debbarma, S., Ashutosh, S. Saini, and S.B. Gowda. (2020). Seasonal effect in expression of AQP1, AQP3 and AQP5 in skin of Murrah buffaloes. J Therm Biol 93: 102727. 33077138
Decker, K., M. Page, and A. Aksimentiev. (2017). Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121: 7899-7906. 28745057
Deen, P.M.T. and C.H. van Os. (1998). Epithelial aquaporins. Curr. Opin. Cell Biol. 10: 435-442. 9719862
Del Puerto, A., J. Pose-Utrilla, A. Simón-García, C. López-Menéndez, A.J. Jiménez, E. Porlan, L.S.M. Pajuelo, G. Cano-García, B. Martí-Prado, &.#.1.9.3.;. Sebastián-Serrano, M.P. Sánchez-Carralero, F. Cesca, G. Schiavo, I. Ferrer, I. Fariñas, M.R. Campanero, and T. Iglesias. (2021). Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol Psychiatry. [Epub: Ahead of Print] 34002021
Delgado-Bermúdez, A., M. Llavanera, S. Recuero, Y. Mateo-Otero, S. Bonet, I. Barranco, B. Fernandez-Fuertes, and M. Yeste. (2019). Effect of AQP Inhibition on Boar Sperm Cryotolerance Depends on the Intrinsic Freezability of the Ejaculate. Int J Mol Sci 20:. 31835821
Delgado-Bermúdez, A., S. Recuero, M. Llavanera, Y. Mateo-Otero, A. Sandu, I. Barranco, J. Ribas-Maynou, and M. Yeste. (2021). Aquaporins Are Essential to Maintain Motility and Membrane Lipid Architecture During Mammalian Sperm Capacitation. Front Cell Dev Biol 9: 656438. 34540822
Delporte, C. and M. Soyfoo. (2022). Aquaporins: Unexpected actors in autoimmune diseases. Autoimmun Rev 21: 103131. 35690248
Di Giusto, G., P. Flamenco, V. Rivarola, J. Fernández, L. Melamud, P. Ford, and C. Capurro. (2012). Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J. Cell. Biochem. 113: 3721-3729. 22786728
Diehn, T.A., M.D. Bienert, B. Pommerrenig, Z. Liu, C. Spitzer, N. Bernhardt, J. Fuge, A. Bieber, N. Richet, F. Chaumont, and G.P. Bienert. (2019). Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Plant J. [Epub: Ahead of Print] 31148338
Dingwell, D., L.S. Brown, and V. Ladizhansky. (2019). Structure of the Functionally Important Extracellular Loop C of Human Aquaporin 1 Obtained by Solid-State NMR Under Nearly Physiological Conditions. J Phys Chem B. [Epub: Ahead of Print] 31411472
Docampo, R., V. Jimenez, S. King-Keller, Z.H. Li, and S.N. Moreno. (2011). The role of acidocalcisomes in the stress response of Trypanosoma cruzi. Adv Parasitol 75: 307-324. 21820562
Dong, S.H., S.S. Kim, S.H. Kim, and S.G. Yeo. (2019). Expression of aquaporins in inner ear disease. Laryngoscope. [Epub: Ahead of Print] 31593306
Dynowski, M., G. Schaaf, D. Loque, O. Moran, and U. Ludewig. (2008). Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 414: 53-61. 18462192
Engel, A., Y. Fujiyoshi, and P. Agre. (2000). The importance of aquaporin water channel protein structures. EMBO J. 19: 800-806. 10698922
Engel, A., Y. Fujiyoshi, T. Gonen, and T. Walz. (2008). Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18: 229-235. 18194855
Eslami, G., M. Ghavami, A.R. Moradi, H. Nadri, and S. Ahmadian. (2020). Molecular Characterization of Aquaglyceroporine: A Novel Mutation in from (MRHO/IR/75/ER). Iran J Parasitol 14: 465-471. 31673266
Faize, M., B. Fumanal, F. Luque, J.A. Ramírez-Tejero, Z. Zou, X. Qiao, L. Faize, A. Gousset-Dupont, P. Roeckel-Drevet, P. Label, and J.S. Venisse. (2020). Genome Wild Analysis and Molecular Understanding of the Aquaporin Diversity in Olive Trees ( L.). Int J Mol Sci 21:. 32545387
Fan, S., E. Amombo, Y. Yin, G. Wang, S. Avoga, N. Wu, and Y. Li. (2023). Root system architecture and genomic plasticity to salinity provide insights into salt-tolerant traits in tall fescue. Ecotoxicol Environ Saf 262: 115315. [Epub: Ahead of Print] 37542983
Fenton, R.A., H.B. Moeller, J.D. Hoffert, M.J. Yu, S. Nielsen, and M.A. Knepper. (2008). Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc. Natl. Acad. Sci. U. S. A. 105: 3134-3139. 18287043
Figarella, K., M. Rawer, N.L. Uzcategui, B.K. Kubata, K. Lauber, F. Madeo, S. Wesselborg, and M. Duszenko. (2005). Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ. 12: 335-346. 15678148
Figarella, K., N.L. Uzcategui, Y. Zhou, A. LeFurgey, M. Ouellette, H. Bhattacharjee, and R. Mukhopadhyay. (2007). Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol. Microbiol. 65: 1006-1017. 17640270
Figueiredo, B.C., N.R. De Assis, S.B. De Morais, V.P. Martins, N.D. Ricci, R.M. Bicalho, C.d.a.S. Pinheiro, and S.C. Oliveira. (2014). Immunological characterization of a chimeric form of Schistosoma mansoni aquaporin in the murine model. Parasitology 141: 1277-1288. 24786243
Finn, R.N., F. Chauvigné, J.A. Stavang, X. Belles, and J. Cerdà. (2015). Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 6: 7814. 26183829
Florio, M., A. Engfors, P. Gena, J. Larsson, A. Massaro, S. Timpka, M.K. Reimer, P. Kjellbom, E. Beitz, U. Johanson, M. Rützler, and G. Calamita. (2022). Characterization of the Aquaporin-9 Inhibitor RG100204 In Vitro and in Mice. Cells 11:. 36231080
Fontijn, R.D., O.L. Volger, T.C. van der Pouw-Kraan, A. Doddaballapur, T. Leyen, J.M. Baggen, R.A. Boon, and A.J. Horrevoets. (2015). Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS One 10: e0145777. 26717516
Frick, A., U.K. Eriksson, F. de Mattia, F. Oberg, K. Hedfalk, R. Neutze, W.J. de Grip, P.M. Deen, and S. Törnroth-Horsefield. (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc. Natl. Acad. Sci. USA 111: 6305-6310. 24733887
Froger, A., J.-P. Rolland, P. Bron, V. Lagrée, F. Le Cahérec, S. Deschamps, J.-F. Hubert, I. Pellerin, D. Thomas, and C. Delamarche. (2001). Functional characterization of a microbial aquaglyceroporin. Microbiology 147: 1129-1135. 11320116
Fu, D., A. Libson, L.J.W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R.M. Stroud. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481-486. 11039922
Gao, J., X. Wang, Y. Chang, J. Zhang, Q. Song, H. Yu, and X. Li. (2006). Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1. Anal Biochem 350: 165-170. 16480680
Geadkaew, A., J. von Bülow, E. Beitz, S. Tesana, S. Vichasri Grams, and R. Grams. (2015). Bi-functionality of Opisthorchis viverrini aquaporins. Biochimie 108: 149-159. 25461277
Geijer C., Ahmadpour D., Palmgren M., Filipsson C., Klein DM., Tamas MJ., Hohmann S. and Lindkvist-Petersson K. (2012). Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem. 287(28):23562-70. 22593571
Geistlinger, K., J.D.R. Schmidt, and E. Beitz. (2022). Lactic Acid Permeability of Aquaporin-9 Enables Cytoplasmic Lactate Accumulation via an Ion Trap. Life (Basel) 12:. 35054513
Geng, X., J. McDermott, J. Lundgren, L. Liu, K.J. Tsai, J. Shen, and Z. Liu. (2017). Role of AQP9 in transport of monomethyselenic acid and selenite. Biometals 30: 747-755. 28798983
Gerbeau, P., J. Güçlü, P. Ripoche, and C. Maurel. (1999). Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18: 577-587. 10417709
Ghosh, K., C.D. Cappiello, S.M. McBride, J.L. Occi, A. Cali, P.M. Takvorian, T.V. McDonald, and L.M. Weiss. (2006). Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. Int J Parasitol 36: 57-62. 16197948
Gonen, T. and T. Walz. (2006). The structure of aquaporins. Q. Rev. Biophys. 39: 361-396. 17156589
Gonen, T., P. Sliz, J. Kistler, Y. Cheng, and T. Walz. (2004b). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429: 193-197. 15141214
Gonen, T., Y. Cheng, J. Kistler, and T. Walz. (2004a). Aquaporin-0 membrane junctions form upon proteolytic cleavage. J. Mol. Biol. 342: 1337-1345. 15351655
Gonen, T., Y. Cheng, P. Sliz, Y. Hiroaki, Y. Fujiyoshi, S.C. Harrison, and T. Walz. (2005). Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438: 633-638. Erratum in: Nature (2006) 441: 248. 16319884
Gössweiner-Mohr, N., C. Siligan, K. Pluhackova, L. Umlandt, S. Koefler, N. Trajkovska, and A. Horner. (2022). The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. Small 18: e2202056. 35802902
Gotfryd, K., A.F. Mósca, J.W. Missel, S.F. Truelsen, K. Wang, M. Spulber, S. Krabbe, C. Hélix-Nielsen, U. Laforenza, G. Soveral, P.A. Pedersen, and P. Gourdon. (2018). Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun 9: 4749. 30420639
Gourbal, B., N. Sonuc, H. Bhattacharjee, D. Legare, S. Sundar, M. Ouellette, B.P. Rosen, and R. Mukhopadhyay. (2004). Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem. 279: 31010-31017. 15138256
Guibourdenche, J., F. Bonnet-Serrano, L. Younes Chaouch, V. Sapin, V. Tsatsaris, D. Combarel, C. Laguillier, and G. Grange. (2021). Amniotic Aaquaporins (AQP) in Normal and Pathological Pregnancies: Interest in Polyhydramnios. Reprod Sci. [Epub: Ahead of Print] 34254277
Guo, H., M. Wei, Y. Liu, Y. Zhu, W. Xu, L. Meng, N. Wang, C. Shao, S. Lu, F. Gao, Z. Cui, Z. Wei, F. Zhao, and S. Chen. (2017). Molecular cloning and expression analysis of the aqp1aa gene in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 12: e0175033. 28380032
Hagströmer, C.J., J. Hyld Steffen, S. Kreida, T. Al-Jubair, A. Frick, P. Gourdon, and S. Törnroth-Horsefield. (2023). Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Sci Rep 13: 14674. 37674034
Hara-Chikuma, M., and A.S. Verkman. (2008). Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell. Biol. 28: 326-332. 17967887
He, J. and B. Yang. (2019). Aquaporins in Renal Diseases. Int J Mol Sci 20:. 30654539
Hedfalk, K., R.M. Bill, J.G. Mullins, S. Karlgren, C. Filipsson, J. Bergstrom, M.J. Tamás, J. Rydström, and S. Hohmann. (2004). A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J. Biol. Chem. 279: 14954-14960. 14752103
Heller, K.B., E.C. Lin, and T.H. Wilson. (1980). Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274-278. 6998951
Hemley SJ., Bilston LE., Cheng S., Chan JN. and Stoodley MA. (2013). Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma. 30(16):1457-67. 23441695
Henderson, S.W., S. Nourmohammadi, S.A. Ramesh, and A.J. Yool. (2022). Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 14: 181-198. 35340612
Hermo, L., D. Krzeczunowicz, and R. Ruz. (2019). Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. J Androl 25: 494-505. 15223838
Herraiz, A., F. Chauvigné, J. Cerdà, X. Bellés, and M.D. Piulachs. (2011). Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). J Exp Biol 214: 3630-3638. 21993792
Hesler, R.A., J.J. Huang, M.D. Starr, V.M. Treboschi, A.G. Bernanke, A.B. Nixon, S.J. McCall, R.R. White, and G.C. Blobe. (2016). TGF-β-Induced Stromal CYR61 Promotes Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma Through Down-Regulation of the Nucleoside Transporters hENT1 and hCNT3. Carcinogenesis. [Epub: Ahead of Print] 27604902
Heymann, J.B. and A. Engel. (2000). Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295: 1039-1053. 10656809
Hill AE. and Shachar-Hill Y. (2015). Are Aquaporins the Missing Transmembrane Osmosensors? J Membr Biol. 248(4):753-65. 25791748
Hirota, A., Y. Takiya, J. Sakamoto, N. Shiojiri, M. Suzuki, S. Tanaka, and R. Okada. (2015). Molecular Cloning of cDNA Encoding an Aquaglyceroporin, AQP-h9, in the Japanese Tree Frog, Hyla japonica: Possible Roles of AQP-h9 in Freeze Tolerance. Zoolog Sci 32: 296-306. 26402924
Horsefield, R., K. Nordén, M. Fellert, A. Backmark, S. Törnroth-Horsefield, A.C. Terwisscha van Scheltinga, J. Kvassman, P. Kjellbom, U. Johanson, and R. Neutze. (2008). High-resolution x-ray structure of human aquaporin 5. Proc. Natl. Acad. Sci. USA 105: 13327-13332. 18768791
Hu, F., Y. Huang, M. Semtner, K. Zhao, Z. Tan, O. Dzaye, H. Kettenmann, K. Shu, and T. Lei. (2020). Down-regulation of Aquaporin-1 mediates a microglial phenotype switch affecting glioma growth. Exp Cell Res 396: 112323. 33058832
Huang, O.S., L.F. Seet, H.W. Ho, S.W. Chu, A. Narayanaswamy, S.A. Perera, R. Husain, T. Aung, and T.T. Wong. (2021). Altered Iris Aquaporin Expression and Aqueous Humor Osmolality in Glaucoma. Invest Ophthalmol Vis Sci 62: 34. 33616622
Hub, J.S. and B.L. de Groot. (2008). Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. USA 105: 1198-1203. 18202181
Huo, Z., M. Lomora, U. Kym, C. Palivan, S.G. Holland-Cunz, and S.J. Gros. (2021). AQP1 Is Up-Regulated by Hypoxia and Leads to Increased Cell Water Permeability, Motility, and Migration in Neuroblastoma. Front Cell Dev Biol 9: 605272. 33644043
Hwang, J.H., S.R. Ellingson, and D.M. Roberts. (2010). Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584: 4339-4343. 20875821
Iena, F.M. and J. Lebeck. (2018). Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 19:. 29300344
Ikarashi, N., C. Nagoya, R. Kon, S. Kitaoka, S. Kajiwara, M. Saito, A. Kawabata, W. Ochiai, and K. Sugiyama. (2019). Changes in the Expression of Aquaporin-3 in the Gastrointestinal Tract Affect Drug Absorption. Int J Mol Sci 20:. 30925715
Ikeda, M., E. Beitz, D. Kozono, W.B. Guggino, P. Agre, and M. Yasui. (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine. J. Biol. Chem. 277: 39873-39879. 12177001
Ikezoe, K., T. Oga, T. Honda, M. Hara-Chikuma, X. Ma, T. Tsuruyama, K. Uno, J. Fuchikami, K. Tanizawa, T. Handa, Y. Taguchi, A.S. Verkman, S. Narumiya, M. Mishima, and K. Chin. (2016). Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Sci Rep 6: 25781. 27165276
Isayenkov, S.V. and F.J. Maathuis. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett. 582: 1625-1628. 18435919
Ishibashi, K. (2006). Aquaporin subfamily with unusual NPA boxes. Biochim. Biophys. Acta. 1758: 989-993. 16579962
Ishibashi, K., Y. Morishita, and Y. Tanaka. (2017). The Evolutionary Aspects of Aquaporin Family. Adv Exp Med Biol 969: 35-50. 28258564
Ishibashi, K., Y. Tanaka, and Y. Morishita. (2020). Perspectives on the evolution of aquaporin superfamily. Vitam Horm 112: 1-27. 32061337
Ishida Y., Nagae T. and Azuma M. (2012). A water-specific aquaporin is expressed in the olfactory organs of the blowfly, Phormia regina. J Chem Ecol. 38(8):1057-61. 22767214
Ishida, H., H.J. Vogel, A.C. Conner, P. Kitchen, R.M. Bill, and J.A. MacDonald. (2021). Simultaneous binding of the N- and C-terminal cytoplasmic domains of aquaporin 4 to calmodulin. Biochim. Biophys. Acta. Biomembr 1864: 183837. [Epub: Ahead of Print] 34890582
Ishida, M., M. Hori, Y. Ooba, M. Kinoshita, T. Matsutani, M. Naito, T. Hagimoto, K. Miyazaki, S. Ueda, K. Miura, and T. Tominaga. (2021). A Functional Aqp1 Gene Product Localizes on The Contractile Vacuole Complex in Paramecium multimicronucleatum. J Eukaryot Microbiol 68: e12843. 33501744
Ishikawa, F., S. Suga, T. Uemura, M.H. Sato, and M. Maeshima. (2005). Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 579: 5814-5820. 16223486
Israel, D., S.H. Lee, T.M. Robson, and J.J. Zwiazek. (2022). Plasma membrane aquaporins of the PIP1 and PIP2 subfamilies facilitate hydrogen peroxide diffusion into plant roots. BMC Plant Biol 22: 566. 36471241
Jain, A., R.K. Verma, and R. Sankararamakrishnan. (2018). Presence of Intra-helical Salt-Bridge in Loop E Half-Helix Can Influence the Transport Properties of AQP1 and GlpF Channels: Molecular Dynamics Simulations of In Silico Mutants. J. Membr. Biol. [Epub: Ahead of Print] 30470864
Jaskiewicz, L., A. Romaszko-Wojtowicz, A. Doboszynska, and A. Skowronska. (2023). The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells 12:. 36766810
Jelen S., Gena P., Lebeck J., Rojek A., Praetorius J., Frokiaer J., Fenton RA., Nielsen S., Calamita G. and Rutzler M. (2012). Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol. 303(11):G1279-87. 23042941
Jia, Y., S. Xu, G. Han, B. Wang, Z. Wang, C. Lan, P. Zhao, M. Gao, Y. Zhang, W. Jiang, B. Qiu, R. Liu, Y.C. Hsu, Y. Sun, C. Liu, Y. Liu, and R. Bai. (2022). Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas. Nat Biomed Eng. [Epub: Ahead of Print] 36376487
Jiang, J., B.V. Daniels, and D. Fu. (2006). Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281: 454-460. 16239219
Jung, H.J., J.Y. Park, H.S. Jeon, and T.H. Kwon. (2011). Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6: e28492. 22145049
Jung, S.Y., D.C. Park, S.S. Kim, and S.G. Yeo. (2020). Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 21:. 32824013
Jung, S.Y., S.S. Kim, Y.I. Kim, S.H. Kim, and S.G. Yeo. (2017). A Review: Expression of Aquaporins in Otitis Media. Int J Mol Sci 18:. 29039751
Jungersted JM., Bomholt J., Bajraktari N., Hansen JS., Klaerke DA., Pedersen PA., Hedfalk K., Nielsen KH., Agner T. and Helix-Nielsen C. (2013). In vivo studies of aquaporins 3 and 10 in human stratum corneum. Arch Dermatol Res. 305(8):699-704. 23677388
Kalluri, S.R., V. Rothhammer, O. Staszewski, R. Srivastava, F. Petermann, M. Prinz, B. Hemmer, and T. Korn. (2011). Functional characterization of aquaporin-4 specific T cells: towards a model for neuromyelitis optica. PLoS One 6: e16083. 21264240
Kannan, A., L.F. Mariajoseph-Antony, A. Panneerselvam, C. Loganathan, D. Kiduva Jothiraman, K. Anbarasu, and C. Prahalathan. (2022). Aquaporin 9 regulates Leydig cell steroidogenesis in diabetes. Syst Biol Reprod Med 68: 213-226. 35352592
Kaptan S., Assentoft M., Schneider HP., Fenton RA., Deitmer JW., MacAulay N. and de Groot BL. (2015). H95 Is a pH-Dependent Gate in Aquaporin 4. Structure. 23(12):2309-18. 26585511
Karlgren, S., C. Filipsson, J.G. Mullins, R.M. Bill, M.J. Tamás, and S. Hohmann. (2004). Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. Eur J Biochem 271: 771-779. 14764093
Kemény, K.K. and E. Ducza. (2022). Physiological Cooperation between Aquaporin 5 and TRPV4. Int J Mol Sci 23:. 36232935
Kikawada, T., A. Saito, Y. Kanamori, M. Fujita, K. Snigórska, M. Watanabe, and T. Okuda. (2008). Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochim. Biophys. Acta. 1778: 514-520. 18082130
Kim, W.O., S.A. Kim, Y.A. Jung, S.I. Suh, and Y.W. Ryoo. (2020). Ultraviolet B Downregulated Aquaporin 1 Expression via the MEK/ERK pathway in the Dermal Fibroblasts. Ann Dermatol 32: 213-222. 33911740
Kirscht, A., S. Survery, P. Kjellbom, and U. Johanson. (2016). Increased Permeability of the Aquaporin SoPIP2;1 by Mercury and Mutations in Loop A. Front Plant Sci 7: 1249. 27625657
Kirscht, A., S.S. Kaptan, G.P. Bienert, F. Chaumont, P. Nissen, B.L. de Groot, P. Kjellbom, P. Gourdon, and U. Johanson. (2016). Crystal Structure of an Ammonia-Permeable Aquaporin. PLoS Biol 14: e1002411. 27028365
Kitahara, T., M. Fukushima, Y. Uno, Y. Mishiro, and T. Kubo. (2003). Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurol Res 25: 865-870. 14669532
Kitchen, P., M.M. Salman, S.U. Pickel, J. Jennings, S. Törnroth-Horsefield, M.T. Conner, R.M. Bill, and A.C. Conner. (2019). Water channel pore size determines exclusion properties but not solute selectivity. Sci Rep 9: 20369. 31889130
Klein, N., J. Neumann, J.D. O''Neil, and D. Schneider. (2015). Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases. Biochim. Biophys. Acta. 1848: 622-633. 25462169
Klein, N., M. Trefz, and D. Schneider. (2019). Covalently Linking Oligomerization-Impaired GlpF Protomers Does Not Completely Re-establish Wild-Type Channel Activity. Int J Mol Sci 20:. 30791644
Kluge, C., M. Pöhnl, and R.A. Böckmann. (2022). Spontaneous local membrane curvature induced by transmembrane proteins. Biophys. J. 121: 671-683. 35122737
Kordowitzki, P., W. Kranc, R. Bryl, B. Kempisty, A. Skowronska, and M.T. Skowronski. (2020). The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 9:. 33271827
Kosinska Eriksson, U., G. Fischer, R. Friemann, G. Enkavi, E. Tajkhorshid, and R. Neutze. (2013). Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340: 1346-1349. 23766328
Koun, S., J.D. Kim, M. Rhee, M.J. Kim, and T.L. Huh. (2016). Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages. Gene Expr Patterns 21: 1-6. 27264560
Kourghi, M., J.V. Pei, M.L. De Ieso, S. Nourmohammadi, P.H. Chow, and A.J. Yool. (2018). Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 45: 401-409. 29193257
Kourghi, M., M.L. De Ieso, S. Nourmohammadi, J.V. Pei, and A.J. Yool. (2018). Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Front Chem 6: 142. 29755973
Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre, and Y. Kitagawa. (2003). Functional expression and characterization of an archaeal aquaporin. AqpM from Methanothermobacter marburgensis. J. Biol. Chem. 278: 10649-10656. 12519768
Krüger, C., A. Jörns, J. Kaynert, M. Waldeck-Weiermair, T. Michel, M. Elsner, and S. Lenzen. (2021). The importance of aquaporin-8 for cytokine-mediated toxicity in rat insulin-producing cells. Free Radic Biol Med 174: 135-143. 34363947
Kubota, M., T. Hasegawa, T. Nakakura, H. Tanii, M. Suzuki, and S. Tanaka. (2006). Molecular and cellular characterization of a new aquaporin, AQP-x5, specifically expressed in the small granular glands of Xenopus skin. J Exp Biol 209: 3199-3208. 16888067
Laothanachareon, T., E. Asin-Garcia, R.J.M. Volkers, J.A. Tamayo-Ramos, V.A.P. Martins Dos Santos, and P.J. Schaap. (2023). Identification of Aquaporins Involved in Hydrogen Peroxide Signaling. J Fungi (Basel) 9:. 37108953
Lebeck, J. (2014). Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol 52: R165-178. 24463099
Lebeck, J., M.U. Cheema, M.T. Skowronski, S. Nielsen, and J. Praetorius. (2015). Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am. J. Physiol. Gastrointest Liver Physiol 308: G198-205. 25477377
Lee, J.K., D. Kozono, J. Remis, Y. Kitagawa, P. Agre, and R.M. Stroud. (2005). Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc. Natl. Acad. Sci. USA 102: 18932-18937. 16361443
Leung, J., A. Pang, W.H. Yuen, Y.L. Kwong, and E.W. Tse. (2007). Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood 109: 740-746. 16968895
Levy, M. (2024). Immune-Mediated Myelopathies. Continuum (Minneap Minn) 30: 180-198. 38330478
Li, H., S. Lee, and B.K. Jap. (1997). Molecular design of aquaporin-1 water channel as revealed by electrocrystallography. Nature Struc. Biol. 4: 263-265. 9095192
Li, J. and A.S. Verkman. (2001). Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276: 31233-31237. 11406631
Li, Q., B. Lu, J. Yang, C. Li, Y. Li, H. Chen, N. Li, L. Duan, F. Gu, J. Zhang, and W. Xia. (2021). Molecular Characterization of an Aquaporin-2 Mutation Causing Nephrogenic Diabetes Insipidus. Front Endocrinol (Lausanne) 12: 665145. 34512542
Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, and F.J. Zhao. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150: 2071-2080. 19542298
Li, S., C. Li, and W. Wang. (2020). Molecular aspects of aquaporins. Vitam Horm 113: 129-181. 32138947
Li, T., W.G. Choi, I.S. Wallace, J. Baudry, and D.M. Roberts. (2011). Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50: 6633-6641. 21710975
Li, W., X.J. Qiang, X.R. Han, L.L. Jiang, S.H. Zhang, J. Han, R. He, and X.G. Cheng. (2018). Ectopic Expression of a Thellungiella salsuginea Aquaporin Gene, TsPIP1;1, Increased the Salt Tolerance of Rice. Int J Mol Sci 19:. 30061546
Li, Z., B. Li, L. Zhang, L. Chen, G. Sun, Q. Zhang, J. Wang, X. Zhi, L. Wang, Z. Xu, and H. Xu. (2016). The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumour Biol 37: 9169-9179. 26768614
Li, Z.H., V.E. Alvarez, J.G. De Gaudenzi, C. Sant''Anna, A.C. Frasch, J.J. Cazzulo, and R. Docampo. (2011). Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J. Biol. Chem. 286: 43959-43971. 22039054
Liao, S., L. Gan, L. Lv, and Z. Mei. (2021). The regulatory roles of aquaporins in the digestive system. Genes Dis 8: 250-258. 33997172
Lind, U., M. Järvå, M. Alm Rosenblad, P. Pingitore, E. Karlsson, A.L. Wrange, E. Kamdal, K. Sundell, C. André, P.R. Jonsson, J. Havenhand, L.A. Eriksson, K. Hedfalk, and A. Blomberg. (2017). Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS One 12: e0181192. 28715506
Liu, H., C. Jin, N. Xia, and Q. Dong. (2024). Overexpression of aquaporin-1 plays a vital role in proliferation, apoptosis, and pyroptosis of Wilms'' tumor cells. J Cancer Res Clin Oncol 150: 85. 38334883
Liu, H., C. Jin, X. Yang, N. Xia, C. Guo, and Q. Dong. (2023). Identification of key genes and validation of key gene aquaporin 1 on Wilms'' tumor metastasis. PeerJ 11: e16025. 37904849
Liu, J., Y. Jin, Q. Wei, Y. Hu, L. Liu, Y. Feng, Y. Jin, and Y. Jiang. (2023). The relationship between aquaporins and skin diseases. Eur J Dermatol 33: 350-359. 37823486
Liu, K., D. Kozono, Y. Kato, P. Agre, A. Hazama, and M. Yasui. (2005). Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc. Natl. Acad. Sci. USA 102: 2192-2197. 15671159
Liu, K., H. Tsujimoto, S.J. Cha, P. Agre, and J.L. Rasgon. (2011). Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc. Natl. Acad. Sci. USA 108: 6062-6066. 21444767
Liu, L.H., U. Ludewig, B. Gassert, W.B. Frommer, and N. von Wirén. (2003). Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133: 1220-1228. 14576283
Liu, Y., J. Peng, Q. Leng, Y. Tian, X. Wu, and R. Tan. (2023). Effects of Aloe-Emodin on the Expression of Brain Aquaporins and Secretion of Neurotrophic Factors in a Rat Model of Post-Stroke Depression. Int J Mol Sci 24:. 36982280
Long, C.Y., G.Q. Huang, Q. Du, L.Q. Zhou, and J.H. Zhou. (2019). The dynamic expression of aquaporins 1 and 4 in rats with hydrocephalus induced by subarachnoid haemorrhage. Folia Neuropathol 57: 182-195. 31556577
Loqué, D., U. Ludewig, L. Yuan, and N. von Wirén. (2005). Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiology 137: 671-680. 15665250
Lu, D.C., H. Zhang, Z. Zador, and A.S. Verkman. (2008). Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 22: 3216-3223. 18511552
Lu, M.X., D.D. Pan, J. Xu, Y. Liu, G.R. Wang, and Y.Z. Du. (2018). Identification and Functional Analysis of the First Aquaporin from Striped Stem Borer,. Front Physiol 9: 57. 29467668
Lu, M.X., F.J. He, J. Xu, Y. Liu, G.R. Wang, and Y.Z. Du. (2021). Identification and physiological function of CsPrip, a new aquaporin in Chilo suppressalis. Int J Biol Macromol 184: 721-730. [Epub: Ahead of Print] 34174306
Luo, Y., L. Ma, W. Du, S. Yan, Z. Wang, and Y. Pang. (2022). Identification and Characterization of Salt- and Drought-Responsive Family Genes in L. Int J Mol Sci 23:. 35328763
Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. (2007b). A silicon transporter in rice. Nature 440: 688-691. 16572174
Ma, J.F., N. Yamaji, K. Tamai, and N. Mitani. (2007a). Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145: 919-924. 17905867
MacAulay, N. (2021). Molecular mechanisms of brain water transport. Nat Rev Neurosci 22: 326-344. 33846637
Magouliotis, D.E., V.S. Tasiopoulou, A.A. Svokos, and K.A. Svokos. (2020). Aquaporins in health and disease. Adv Clin Chem 98: 149-171. 32564785
Mahdieh, M., A. Mostajeran, T. Horie, and M. Katsuhara. (2008). Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol. 49: 801-813. 18385163
Mallo, R.C. and Ashby, M.T. (2006). AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J. Bacteriol. 188:820-822. 16385074
Marchbank, T. and R.J. Playford. (2018). Trefoil factor family peptides enhance cell migration by increasing cellular osmotic permeability and aquaporin 3 levels. FASEB J. 32: 1017-1024. 29046361
Mariajoseph-Antony, L.F., A. Kannan, A. Panneerselvam, C. Loganathan, E.M. Shankar, K. Anbarasu, and C. Prahalathan. (2020). Role of Aquaporins in Inflammation-a Scientific Curation. Inflammation. [Epub: Ahead of Print] 32435911
Maroli, N., A. Jayakrishnan, R. Ramalingam Manoharan, P. Kolandaivel, and K. Krishna. (2019). Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. J Phys Chem B. [Epub: Ahead of Print] 31204482
Marracino, P., M. Bernardi, M. Liberti, F. Del Signore, E. Trapani, J.A. Gárate, C.J. Burnham, F. Apollonio, and N.J. English. (2018). Transprotein-Electropore Characterization: A Molecular Dynamics Investigation on Human AQP4. ACS Omega 3: 15361-15369. 30556005
Martínez, N. and A.E. Damiano. (2023). Aquaporins in Fetal Development. Adv Exp Med Biol 1398: 251-266. 36717499
Martos-Sitcha, J.A., M.A. Campinho, J.M. Mancera, G. Martínez-Rodríguez, and J. Fuentes. (2015). Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 218: 684-693. 25573823
Mashini, A.G., C.A. Oakley, A.R. Grossman, V.M. Weis, and S.K. Davy. (2022). Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis. Appl. Environ. Microbiol. 88: e0041222. 35678605
Mathew, L.G., E.M. Campbell, A.J. Yool, and J.A. Fabrick. (2011). Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem Mol Biol 41: 178-190. 21146609
Matsui, H., B. Hopkinson, K. Nakajima, and Y. Matsuda. (2018). Plasma-membrane-type aquaporins from marine diatoms function as CO2/NH3 channels and provide photoprotection. Plant Physiol. [Epub: Ahead of Print] 30076224
McDermott JR., Jiang X., Beene LC., Rosen BP. and Liu Z. (2010). Pentavalent methylated arsenicals are substrates of human AQP9. Biometals. 23(1):119-27. 19802720
Meenakshi, M., A. Kannan, M. Jothimani, T. Selvi, M. Karthikeyan, C. Prahalathan, and K. Srinivasan. (2023). Evaluation of dual potentiality of 2,4,5-trisubstituted oxazole derivatives as aquaporin-4 inhibitors and anti-inflammatory agents in lung cells. RSC Adv 13: 26111-26120. 37664213
Méndez-Giménez, L., S. Ezquerro, I.V. da Silva, G. Soveral, G. Frühbeck, and A. Rodríguez. (2018). Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front Chem 6: 99. 29675407
Meng, Y.-L., Z. Liu, and B.P. Rosen. (2004). As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279: 18334-18341. 14970228
Meselhy, A.G., K. Mosa, S. Chhikara, K. Kumar, C. Musante, J.C. White, and O.P. Dhankher. (2024). Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.). Plant Cell Rep 43: 64. 38340214
Michalek, K. (2016). Aquaglyceroporins in the kidney: present state of knowledge and prospects. J. Physiol. Pharmacol 67: 185-193. 27226178
Michenkova, M., S. Taki, M.C. Blosser, H.J. Hwang, T. Kowatz, F.J. Moss, R. Occhipinti, X. Qin, S. Sen, E. Shinn, D. Wang, B.S. Zeise, P. Zhao, N. Malmstadt, A. Vahedi-Faridi, E. Tajkhorshid, and W.F. Boron. (2021). Carbon dioxide transport across membranes. Interface Focus 11: 20200090. 33633837
Mirabella, N., A. Pelagalli, G. Liguori, M.A. Rashedul, and C. Squillacioti. (2021). Differential abundances of AQP3 and AQP5 in reproductive tissues from dogs with and without cryptorchidism. Anim Reprod Sci 228: 106735. [Epub: Ahead of Print] 33744817
Misyura, L., E. Grieco Guardian, A.C. Durant, and A. Donini. (2020). A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water. PLoS One 15: e0234892. 32817668
Mitani N., N. Yamaji, J.F. Ma. (2008). Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch : . 18214526
Mitani-Ueno, N., N. Yamaji, F.J. Zhao, and J.F. Ma. (2011). The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62: 4391-4398. 21586431
Moe, S.E., J.G. Sorbo, R. Sogaard, T. Zeuthen, O. Petter Ottersen, and T. Holen. (2008). New isoforms of rat Aquaporin-4. Genomics 91: 367-377. 18255256
Molodenskiy, D.S., H.D.T. Mertens, and D.I. Svergun. (2020). An automated data processing and analysis pipeline for transmembrane proteins in detergent solutions. Sci Rep 10: 8081. 32415234
Mom, R., B. Muries, P. Benoit, J. Robert-Paganin, S. Réty, J.S. Venisse, A. Padua, P. Label, and D. Auguin. (2020). Voltage-gating of aquaporins, a putative conserved safety mechanism during ionic stresses. FEBS Lett. [Epub: Ahead of Print] 32997337
Mom, R., J. Robert-Paganin, T. Mom, C. Chabbert, S. Réty, and D. Auguin. (2022). A Perspective for Ménière''s Disease: In Silico Investigations of Dexamethasone as a Direct Modulator of AQP2. Biomolecules 12:. 35454100
Mom, R., S. Réty, and D. Auguin. (2023). Cortisol Interaction with Aquaporin-2 Modulates Its Water Permeability: Perspectives for Non-Genomic Effects of Corticosteroids. Int J Mol Sci 24:. 36675012
Mom, R., S. Réty, V. Mocquet, and D. Auguin. (2023). Plant Aquaporin Gating Is Reversed by Phosphorylation on Intracellular Loop D-Evidence from Molecular Dynamics Simulations. Int J Mol Sci 24:. 37762101
Montalvetti, A., P. Rohloff, and R. Docampo. (2004). A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J. Biol. Chem. 279: 38673-38682. 15252016
Montiel, V., R. Bella, L.Y.M. Michel, H. Esfahani, D. De Mulder, E.L. Robinson, J.P. Deglasse, M. Tiburcy, P.H. Chow, J.C. Jonas, P. Gilon, B. Steinhorn, T. Michel, C. Beauloye, L. Bertrand, C. Farah, F. Dei Zotti, H. Debaix, C. Bouzin, D. Brusa, S. Horman, J.L. Vanoverschelde, O. Bergmann, D. Gilis, M. Rooman, A. Ghigo, S. Geninatti-Crich, A. Yool, W.H. Zimmermann, H.L. Roderick, O. Devuyst, and J.L. Balligand. (2020). Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 12:. 33028705
Moon, C.S., D. Moon, and S.K. Kang. (2022). Aquaporins in Cancer Biology. Front Oncol 12: 782829. 35847914
Mukhopadhyay R., Bhattacharjee H. and Rosen BP. (2014). Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta. 1840(5):1583-91. 24291688
Murata, K., K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, and Y. Fujiyoshi. (2000). Structural determinants of water permeation through aquaporin-1. Science 407: 599-605.
Najafabadi, H.S., N. Torabi, and M. Chamankhah. (2008). Designing multiple degenerate primers via consecutive pairwise alignments. BMC Bioinformatics 9: 55. 18221562
Nakazawa, Y., M. Oka, A. Mitsuishi, M. Bando, and M. Takehana. (2011). Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens. Biochem. Biophys. Res. Commun. 415: 125-130. 22020074
Navarro-Ródenas, A., J.M. Ruíz-Lozano, R. Kaldenhoff, and A. Morte. (2012). The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport. Mol. Plant Microbe Interact. 25: 259-266. 22088195
Nemeth-Cahalan, K.L., K. Kalman, A. Froger, and J. E. Hall. (2007). Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer. J. Gen. Physiol. 130(5):457-464. 17938229
Nicosia, M., J. Lee, A. Beavers, D. Kish, G.W. Farr, P.R. McGuirk, M.F. Pelletier, J.D. Lathia, R.L. Fairchild, and A. Valujskikh. (2023). Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol. [Epub: Ahead of Print] 36805947
Niemietz, C.M. and S.D. Tyerman. (2000). Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465: 110-114. 10631315
Nishihara, E., E. Yokota, A. Tazaki, H. Orii, M. Katsuhara, K. Kataoka, H. Igarashi, Y. Moriyama, T. Shimmen, and S. Sonobe. (2008). Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 100: 179-188. 18004980
Niu, Q., R. Hao, Y. Pan, Z. Liu, J. Yang, G. Guan, J. Luo, and H. Yin. (2022). Molecular Characterization and Gene Expression Analysis of Aquaporin in. Front Physiol 13: 811628. 35250616
Nozaki, K., D. Ishii, and K. Ishibashi. (2008). Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 456(4): 701-707. 18034355
Ohene, Y., W.J. Harris, E. Powell, N.W. Wycech, K.F. Smethers, S. Lasič, K. South, G. Coutts, A. Sharp, C.B. Lawrence, H. Boutin, G.J.M. Parker, L.M. Parkes, and B.R. Dickie. (2023). Filter exchange imaging with crusher gradient modelling detects increased blood-brain barrier water permeability in response to mild lung infection. Fluids Barriers CNS 20: 25. 37013549
Olesen, E.T. and R.A. Fenton. (2017). Aquaporin-2 membrane targeting: still a conundrum. Am. J. Physiol. Renal Physiol ajprenal.00010.2017. [Epub: Ahead of Print] 28179252
Oliveira, R., F. Lages, M. Silva-Graça, and C. Lucas. (2003). Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim. Biophys. Acta. 1613: 57-71. 12832087
Ozu, M., J.J. Alvear-Arias, M. Fernandez, A. Caviglia, A. Peña-Pichicoi, C. Carrillo, E. Carmona, A. Otero-Gonzalez, J.A. Garate, G. Amodeo, and C. Gonzalez. (2022). Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 23:. 36293170
Paccetti-Alves, I., M.S.P. Batista, C. Pimpão, B.L. Victor, and G. Soveral. (2023). Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 24:. 36983077
Palmgren, M., M. Hernebring, S. Eriksson, K. Elbing, C. Geijer, S. Lasič, P. Dahl, J.S. Hansen, D. Topgaard, and K. Lindkvist-Petersson. (2017). Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins. J. Membr. Biol. [Epub: Ahead of Print] 28914342
Pan, Q.L., F.X. Lin, N. Liu, and R.C. Chen. (2022). The role of aquaporin 4 (AQP4) in spinal cord injury. Biomed Pharmacother 145: 112384. 34915672
Pareek G., Krishnamoorthy V. and D'Silva P. (2013). Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol Cell Biol. 33(23):4641-59. 24061477
Park, J.H. and M.H. Saier, Jr. (1996). Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153: 171-180. 8849412
Pellavio, G. and U. Laforenza. (2021). Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie. [Epub: Ahead of Print] 34087390
Petersen, L.M. and E. Beitz. (2020). The Ionophores CCCP and Gramicidin but Not Nigericin Inhibit Aquaglyceroporins at Neutral pH. Cells 9:. 33096791
Petrova, R.S., N. Francis, K.L. Schey, and P.J. Donaldson. (2024). Verification of the gene and protein expression of the aquaglyceroporin AQP3 in the mammalian lens. Exp Eye Res 240: 109828. 38354944
Petrova, R.S., N. Nair, N. Bavana, Y. Chen, K.L. Schey, and P.J. Donaldson. (2023). Modulation of Membrane Trafficking of AQP5 in the Lens in Response to Changes in Zonular Tension Is Mediated by the Mechanosensitive Channel TRPV1. Int J Mol Sci 24:. 37240426
Philip, B.N., A.J. Kiss, and R.E. Lee, Jr. (2011). The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1. J Exp Biol 214: 848-857. 21307072
Pietrement, C., N. Da Silva, C. Silberstein, M. James, M. Marsolais, A. Van Hoek, D. Brown, N. Pastor-Soler, N. Ameen, R. Laprade, V. Ramesh, and S. Breton. (2008). Role of NHERF1, Cystic Fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J. Biol. Chem. 283: 2986-2996. 18055461
Pillitteri, L.J., N.L. Bogenschutz, and K.U. Torii. (2008). The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in arabidopsis. Plant Cell Physiol. 49: 934-943. 18450784
Ping, Z., F. Zhou, X. Lin, and H. Su. (2018). Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant. ACS Omega 3: 4113-4122. 31458647
Pinilla, C.M.B., P. Stincone, and A. Brandelli. (2021). Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. Int J Food Microbiol 346: 109170. [Epub: Ahead of Print] 33770680
Pluhackova, K., V. Schittny, P.C. Bürkner, C. Siligan, and A. Horner. (2022). Multiple pore lining residues modulate water permeability of GlpF. Protein. Sci. 31: e4431. 36173178
Pust, A., D. Kylies, C. Hube-Magg, M. Kluth, S. Minner, C. Koop, T. Grob, M. Graefen, G. Salomon, M.C. Tsourlakis, J. Izbicki, C. Wittmer, H. Huland, R. Simon, W. Wilczak, G. Sauter, S. Steurer, T. Krech, T. Schlomm, and N. Melling. (2015). Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence. Hum Pathol. [Epub: Ahead of Print] 26614400
Ráduly, G., Z. Pap, L. Dénes, A. Szántó, T.C. Sipos, and Z. Pávai. (2019). The immunoexpression of aquaporin 1, PAX2, PAX8, connexin 36, connexin 43 in human fetal kidney. Rom J Morphol Embryol 60: 437-444. 31658316
Ramírez-Lorca, R., A.M. Muñoz-Cabello, J.J. Toledo-Aral, A.A. Ilundáin, and M. Echevarría. (2006). Aquaporins in chicken: localization of ck-AQP5 along the small and large intestine. Comp Biochem Physiol A Mol Integr Physiol 143: 269-277. 16418008
Raza, Q., M.A.R. Rashid, M. Waqas, Z. Ali, I.A. Rana, S.H. Khan, I.A. Khan, and R.M. Atif. (2023). Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC Plant Biol 23: 172. 37003962
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1993). The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28: 235-257. 8325040
Ribeiro, J.C., R.L. Bernardino, A. Gonçalves, A. Barros, G. Calamita, M.G. Alves, and P.F. Oliveira. (2023). Aquaporin-7-Mediated Glycerol Permeability Is Linked to Human Sperm Motility in Asthenozoospermia and during Sperm Capacitation. Cells 12:. 37566082
Rivera, M.A. and T.D. Fahey. (2019). Association Between aquaporin-1 and Endurance Performance: A Systematic Review. Sports Med Open 5: 40. 31486928
Rohloff, P., A. Montalvetti, and R. Docampo. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J. Biol. Chem. 279: 52270-52281. 15466463
Roudier, N., P. Ripoche, P. Gane, P.Y. Le Pennec, G. Daniels, J.P. Cartron, and P. Bailly. (2002). AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J. Biol. Chem. 277: 45854-45859. 12239222
Rump, K., B. Koos, D. Ziehe, P. Thon, T. Rahmel, L. Palmowski, B. Marko, A. Wolf, A. Witowski, Z. Bazzi, M. Bazzi, J. Orlowski, M. Adamzik, L. Bergmann, and M. Unterberg. (2024). Methazolamide Reduces the AQP5 mRNA Expression and Immune Cell Migration-A New Potential Drug in Sepsis Therapy? Int J Mol Sci 25:. 38203778
Sabir, F., S. Gomes, M.C. Loureiro-Dias, G. Soveral, and C. Prista. (2020). Molecular and Functional Characterization of Grapevine NIPs through Heterologous Expression in Null. Int J Mol Sci 21:. 31963923
Sachdeva, R., P. Priyadarshini, and S. Gupta. (2022). Aquaporins Display a Diversity in their Substrates. J. Membr. Biol. [Epub: Ahead of Print] 35986775
Saitoh, Y., N. Mitani-Ueno, K. Saito, K. Matsuki, S. Huang, L. Yang, N. Yamaji, H. Ishikita, J.R. Shen, J.F. Ma, and M. Suga. (2021). Structural basis for high selectivity of a rice silicon channel Lsi1. Nat Commun 12: 6236. 34716344
Salvatierra, A., P. Mateluna, G. Toro, S. Solís, and P. Pimentel. (2023). Genome-Wide Identification and Gene Expression Analysis of Sweet Cherry Aquaporins ( L.) under Abiotic Stresses. Genes (Basel) 14:. 37107698
Santos, C.R., M.D. Estêvão, J. Fuentes, J.C. Cardoso, M. Fabra, A.L. Passos, F.J. Detmers, P.M. Deen, J. Cerdà, and D.M. Power. (2004). Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J Exp Biol 207: 1217-1227. 14978062
Saparov, S.M., D. Kozono, U. Rothe, P. Agre, and P. Pohl. (2001). Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276: 31515-31520. 11410596
Saparov, S.M., K. Liu, P. Agre, and P. Pohl. (2007). Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282: 5296-5301. 17189259
Savage, D.F., P.F. Egea, Y. Robles-Colmenares, J.D. O''Connell, 3rd, and R.M. Stroud. (2003). Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS Biol 1: E72. 14691544
Schlosser, P., N. Scherer, F. Grundner-Culemann, S. Monteiro-Martins, S. Haug, I. Steinbrenner, B. Uluvar, M. Wuttke, Y. Cheng, A.B. Ekici, G. Gyimesi, E.D. Karoly, F. Kotsis, J. Mielke, M.F. Gomez, B. Yu, M.E. Grams, J. Coresh, E. Boerwinkle, M. Köttgen, F. Kronenberg, H. Meiselbach, R.P. Mohney, S. Akilesh, , M. Schmidts, M.A. Hediger, U.T. Schultheiss, K.U. Eckardt, P.J. Oefner, P. Sekula, Y. Li, and A. Köttgen. (2023). Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. Nat. Genet. [Epub: Ahead of Print] 37277652
Schmidt, R.S., J.P. Macêdo, M.E. Steinmann, A.G. Salgado, P. Bütikofer, E. Sigel, D. Rentsch, and P. Mäser. (2018). Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 285: 1012-1023. 29063677
Shangzu, Z., X. Dingxiong, M. ChengJun, C. Yan, L. Yangyang, L. Zhiwei, Z. Ting, M. Zhiming, Z. Yiming, Z. Liying, and L. Yongqi. (2022). Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 183: 106363. [Epub: Ahead of Print] 35905892
Sharma, Y., V. Thakral, G. Raturi, K. Dutta Dubey, H. Sonah, A. Pareek, T. Raj Sharma, and R. Deshmukh. (2023). Structural assessment of OsNIP2;1 highlighted critical residues defining solute specificity and functionality of NIP class aquaporins. J Adv Res. [Epub: Ahead of Print] 37164213
Shashkova, S., M. Andersson, S. Hohmann, and M.C. Leake. (2021). Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells. Methods 193: 46-53. 32387484
Shibata, Y., I. Katayama, T. Nakakura, Y. Ogushi, R. Okada, S. Tanaka, and M. Suzuki. (2015). Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis. Gen Comp Endocrinol 222: 11-19. 25220852
Shukla, V.K. and M.J. Chrispeels. (1998). Aquaporins: their role and regulation in cellular water movement. NATO-ASI Series (subseries H). Cellular integration of signaling pathways in plant development, pp.11-22. Springer-Verlag.
Sidoux-Walter, F., N. Pettersson, and S. Hohmann. (2004). The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc. Natl. Acad. Sci. USA 101: 17422-17427. 15583134
Silverglate, B., X. Gao, H.P. Lee, P. Maliha, and G.T. Grossberg. (2023). The aquaporin-4 water channel and updates on its potential as a drug target for Alzheimer''s disease. Expert Opin Ther Targets 1-8. [Epub: Ahead of Print] 37475487
Singh, R.K., R. Deshmukh, M. Muthamilarasan, R. Rani, and M. Prasad. (2020). Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiol. Biochem 149: 178-189. [Epub: Ahead of Print] 32078896
Solenov, E.I., G.S. Baturina, L.E. Katkova, B. Yang, and S.G. Zarogiannis. (2023). Methods to Measure Water Permeability. Adv Exp Med Biol 1398: 343-361. 36717506
Soria LR., Fanelli E., Altamura N., Svelto M., Marinelli RA. and Calamita G. (2010). Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun. 393(2):217-21. 20132793
Soto, G., K. Alleva, M.A. Mazzella, G. Amodeo, and J.P. Muschietti. (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 582: 4077-4082. 19022253
Soto, G., R. Fox, N. Ayub, K. Alleva, F. Guaimas, E.J. Erijman, A. Mazzella, G. Amodeo, and J. Muschietti. (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64: 1038-1047. 21143683
Stavang, J.A., F. Chauvigné, H. Kongshaug, J. Cerdà, F. Nilsen, and R.N. Finn. (2015). Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics 16: 618. 26282991
Stoeckelhuber, M., F.D. Grill, K.D. Wolff, M.R. Kesting, C.T. Wolff, A.M. Fichter, D.J. Loeffelbein, C. Schmitz, and L.M. Ritschl. (2023). Infantile human labial glands: Distribution of aquaporins and claudins in the context of paracellular and transcellular pathways. Tissue Cell 82: 102052. [Epub: Ahead of Print] 36905859
Stogsdill, B., J. Frisbie, C.M. Krane, and D.L. Goldstein. (2017). Expression of the aquaglyceroporin HC-9 in a freeze-tolerant amphibian that accumulates glycerol seasonally. Physiol Rep 5:. 28784850
Stokum, J.A., B. Shim, S. Negoita, N. Tsymbalyuk, O. Tsymbalyuk, S. Ivanova, K. Keledjian, J. Bryan, M.P. Blaustein, R.M. Jha, K.T. Kahle, V. Gerzanich, and J.M. Simard. (2023). Cation flux through SUR1-TRPM4 and NCX1 in astrocyte endfeet induces water influx through AQP4 and brain swelling after ischemic stroke. Sci Signal 16: eadd6364. 37279286
Stokum, J.A., M.S. Kwon, S.K. Woo, O. Tsymbalyuk, R. Vennekens, V. Gerzanich, and J.M. Simard. (2017). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. [Epub: Ahead of Print] 28906027
Sudhakaran, S., V. Thakral, G. Padalkar, N. Rajora, P. Dhiman, G. Raturi, Y. Sharma, D.K. Tripathi, R. Deshmukh, T.R. Sharma, and H. Sonah. (2021). Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol Plant. [Epub: Ahead of Print] 33723851
Sugiura, K., N. Aste, M. Fujii, K. Shimada, and N. Saito. (2008). Effect of hyperosmotic stimulation on aquaporins gene expression in chick kidney. Comp Biochem Physiol A Mol Integr Physiol 151: 173-179. 18621138
Suzuki, H., K. Nishikawa, Y. Hiroaki, and Y. Fujiyoshi. (2008). Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim. Biophys. Acta. 1778(4): 1181-1189. 18179769
Törnroth-Horsefield, S., Y. Wang, K. Hedfalk, U. Johanson, M. Karlsson, E. Tajkhorshid, R. Neutze, and P. Kjellbom. (2006). Structural mechanism of plant aquaporin gating. Nature 439: 688-694. 16340961
Takahashi, G., S. Hasegawa, Y. Fukutomi, C. Harada, M. Furugori, Y. Seki, Y. Kikkawa, and K. Wada. (2017). A novel missense mutation of Mip causes semi-dominant cataracts in the Nat mouse. Exp Anim 66: 271-282. 28442635
Takano, J., M. Wada, U. Ludewig, G. Schaaf, N. von Wirén, and T. Fujiwara. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell 18: 1498-1509. 16679457
Tang, H., C. Shao, and J. He. (2017). Down-regulated expression of aquaporin-4 in the cerebellum after status epilepticus. Cogn Neurodyn 11: 183-188. 28348649
Tani, K., T. Mitsuma, Y. Hiroaki, A. Kamegawa, K. Nishikawa, Y. Tanimura, and Y. Fujiyoshi. (2009). Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. J. Mol. Biol. 389: 694-706. 19406128
Thormann, M., N. Traube, N. Yehia, R. Koestler, G. Galabova, N. MacAulay, and T.L. Toft-Bertelsen. (2024). Toward New AQP4 Inhibitors: ORI-TRN-002. Int J Mol Sci 25:. 38255997
Tong, H., X. Wang, Y. Dong, Q. Hu, Z. Zhao, Y. Zhu, L. Dong, F. Bai, and X. Dong. (2019). A s aquaporin acts as peroxiporin for efflux of cellular hydrogen peroxide and alleviation of oxidative stress. J. Biol. Chem. 294: 4583-4595. 30705089
Törnroth-Horsefield, S., C. Chivasso, H. Strandberg, C. D'Agostino, C.V.T. O'Neale, K.L. Schey, and C. Delporte. (2022). Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 23:. 36077012
Tsujimoto, H., J.M. Sakamoto, and J.L. Rasgon. (2017). Functional characterization of Aquaporin-like genes in the human bed bug Cimex lectularius. Sci Rep 7: 3214. 28607409
Tunes, L.G., D.B. Ascher, D.E.V. Pires, and R.L. Monte-Neto. (2021). The mutation G133D on Leishmania guyanensis AQP1 is highly destabilizing as revealed by molecular modeling and hypo-osmotic shock assay. Biochim. Biophys. Acta. Biomembr 1863: 183682. 34175297
Uehlein, N., B. Otto, D.T. Hanson, M. Fischer, N. McDowell, and R. Kaldenhoff. (2008). Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability. Plant Cell 20: 648-657. 18349152
Uehlein, N., C. Lovisolo, F. Siefritz, and R. Kaldenhoff. (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature (in press). 14520414
Uzcategui, N.L., A. Szallies, S. Pavlovic-Djuranovic, M. Palmada, K. Figarella, C. Boehmer, F. Lang, E. Beitz, and M. Duszenko. (2004). Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J. Biol. Chem. 279: 42669-42676. 15294911
Vajpai, M., M. Mukherjee, and R. Sankararamakrishnan. (2018). Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 8: 12055. 30104609
van den Berg, B., C. Pedebos, J.R. Bolla, C.V. Robinson, A. Baslé, and S. Khalid. (2021). Structural Basis for Silicic Acid Uptake by Higher Plants. J. Mol. Biol. 433: 167226. [Epub: Ahead of Print] 34487790
Varadaraj, K. and S.S. Kumari. (2020). Lens aquaporins function as peroxiporins to facilitate membrane transport of hydrogen peroxide. Biochem. Biophys. Res. Commun. 524: 1025-1029. 32063362
Varadaraj, K., S.S. Kumari, R. Patil, M.B. Wax, and R.T. Mathias. (2008). Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87: 9-21. 18501347
Venisse, J.S., E. Õunapuu-Pikas, M. Dupont, A. Gousset-Dupont, M. Saadaoui, M. Faize, S. Chen, S. Chen, G. Petel, B. Fumanal, P. Roeckel-Drevet, A. Sellin, and P. Label. (2021). Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in. Int J Mol Sci 22:. 34298887
Verdoucq, L., A. Grondin, and C. Maurel. (2008). Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem. J. 415: 409-416. 18637793
Verkerk, A.O., E.M. Lodder, and R. Wilders. (2019). Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 20:. 31027200
Verma, R.K., A.B. Gupta, and R. Sankararamakrishnan. (2015). Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters. Methods Enzymol 557: 485-520. 25950979
Viadiu, H., T. Gonen, and T. Walz. (2007). Projection map of aquaporin-9 at 7 Å resolution. J. Mol. Biol. 367: 80-88. 17239399
Vireak, C., A.N. Seo, M.H. Han, T.I. Park, Y.J. Kim, and J.Y. Jeong. (2019). Aquaporin 5 expression correlates with tumor multiplicity and vascular invasion in hepatocellular carcinoma. Int J Clin Exp Pathol 12: 516-527. 31933856
Virkki MT., Agrawal N., Edsbacker E., Cristobal S., Elofsson A. and Kauko A. (2014). Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci. 23(7):981-92. 24777974
Von Bülow, J. and E. Beitz. (2015). Number and regulation of protozoan aquaporins reflect environmental complexity. Biol Bull 229: 38-46. 26338868
von Bülow, J., A. Golldack, T. Albers, and E. Beitz. (2015). The amoeboidal Dictyostelium aquaporin AqpB is gated via Tyr216 and aqpB gene deletion affects random cell motility. Biol Cell 107: 78-88. 25546705
Vorob''ev, V.N., T.A. Sibgatullin, K.A. Sterkhova, E.A. Alexandrov, Y.V. Gogolev, O.A. Timofeeva, V.Y. Gorshkov, and V.V. Chevela. (2019). Ytterbium increases transmembrane water transport in Zea mays roots via aquaporin modulation. Biometals 32: 901-908. 31587124
Wagner, K., L. Unger, M.M. Salman, P. Kitchen, R.M. Bill, and A.J. Yool. (2022). Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 23:. 35163313
Wan, Q., Y. Li, J. Cheng, Y. Wang, J. Ge, T. Liu, L. Ma, Y. Li, J. Liu, C. Zhou, H. Li, X. Sun, X. Chen, Q.X. Li, and X. Yu. (2024). Two aquaporins PIP1;1 and PIP2;1 mediate the uptake of neonicotinoid pesticides in plants. Plant Commun 100830. [Epub: Ahead of Print] 38297839
Wang, F. and B. Ye. (2016). Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus. Parasitol Res 115: 3499-3511. 27164831
Wang, F. and B. Ye. (2020). [Advances in research on aquaporins in medical helminthes]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 32: 542-547. 33185072
Wang, G., H. Zhang, Z. Zhou, W. Jin, X. Zhang, Z. Ma, and X. Wang. (2023). AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med 29: 116. 37641009
Wang, H., L. Zhang, Y. Tao, Z. Wang, D. Shen, and H. Dong. (2019). Transmembrane Helices 2 and 3 Determine the Localization of Plasma Membrane Intrinsic Proteins in Eukaryotic Cells. Front Plant Sci 10: 1671. 31998350
Wang, J., L. Yang, S. Chai, Y. Ren, M. Guan, F. Ma, and J. Liu. (2022). An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. J Plant Physiol. 273: 153711. 35550521
Wang, L., Q. Li, Q. Lei, C. Feng, Y. Gao, X. Zheng, Y. Zhao, Z. Wang, and J. Kong. (2015). MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS One 10: e0142446. 26562158
Wang, R., X. Wang, J. Zhao, J. Jin, W. Fan, X. Zhu, Q. Chen, B. Zhang, L. Lan, K. Qu, L. Zhu, and J. Wang. (2022). Clinical value and molecular mechanism of AQGPs in different tumors. Med Oncol 39: 174. 35972604
Wang, X., N. Zhao, T. Wang, J. Huang, Q. Liu, and J. Li. (2023). Genome-Wide Identification of Family Related to Spermatogenesis in Turbot (). Int J Mol Sci 24:. 37511528
Wang, Y., E. Xiao, G. Wu, Q. Bai, F. Xu, X. Ji, C. Li, L. Li, and J. Liu. (2021). The roles of selectivity filters in determining aluminum transport by AtNIP1;2. Plant Signal Behav 1991686. [Epub: Ahead of Print] 34709126
Wang, Z. and K.L. Schey. (2018). Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20. Invest Ophthalmol Vis Sci 59: 5648-5658. 30489624
Wang, Z., Y. Wang, Y. He, N. Zhang, W. Chang, and Y. Niu. (2020). Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim Cells Syst (Seoul) 24: 253-259. 33209198
Watanabe, S., C.S. Moniaga, S. Nielsen, and M. Hara-Chikuma. (2016). Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun. 471: 191-197. 26837049
Watanabe, T., K. Sato, T. Kono, Y. Yamagishi, F. Kumazawa, M. Miyamoto, M. Takano, and H. Tsuda. (2020). Aquaporin 3 Expression in Endometrioid Carcinoma of the Uterine Body Correlated With Early Stage and Lower Grade. Pathol Oncol Res. [Epub: Ahead of Print] 32382899
Wysocki, R., C.C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J.M. Thevelein, and M.J. Tamás. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40: 1391-1401. 11442837
Xiang, M., X. Qian, L. Han, H. Wang, J. Wang, W. Liu, Y. Gu, S. Yao, J. Yang, Y. Zhang, Y. Peng, and Z. Zhang. (2023). Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 26: 106561. 37123234
Xie, H., S. Ma, Y. Zhao, H. Zhou, Q. Tong, Y. Chen, Z. Zhang, K. Yu, Q. Lin, L. Kai, M. Liu, and J. Yang. (2022). Molecular Mechanisms of Mercury-Sensitive Aquaporins. J. Am. Chem. Soc. 144: 22229-22241. 36413513
Xing, R., J. Cheng, J. Yu, S. Li, H. Ma, and Y. Zhao. (2023). Trifluoperazine reduces apoptosis and inflammatory responses in traumatic brain injury by preventing the accumulation of Aquaporin4 on the surface of brain cells. Int J Med Sci 20: 797-809. 37213674
Xiong, M., C. Li, W. Wang, and B. Yang. (2023). Protein Structure and Modification of Aquaporins. Adv Exp Med Biol 1398: 15-38. 36717484
Xu, C., X. Yi, L. Tang, H. Wang, S. Chu, and J. Yu. (2023). Differential regulation of autophagy on urine-concentrating capability through modulating the renal AQP2 expression and renin-angiotensin system in mice. Am. J. Physiol. Renal Physiol 325: F503-F518. 37589054
Yaba, A., B. Sozen, B. Suzen, and N. Demir. (2017). Expression of aquaporin-7 and aquaporin-9 in tanycyte cells and choroid plexus during mouse estrus cycle. Morphologie 101: 39-46. 27746040
Yadav, E., N. Yadav, A. Hus, and J.S. Yadav. (2020). Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 174: 106193. 33096317
Yang, B., Z. Zador, and A.S. Verkman. (2008). Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283: 15280-15286. 18375385
Yang, G., G. Zhang, Q. Wu, and J. Zhao. (2011). A novel mutation in the MIP gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 17: 1320-1323. 21647270
Yang, H.-C., J. Cheng, T.M. Finan, B.P. Rosen, and H. Bhattacharjee. (2005). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187: 6991-6997. 16199569
Yang, X., X. Dai, H. Jin, G. Lin, Z. Wang, Y. Song, W. Zhang, C. Man, and Y. Jiang. (2021). Physicochemical and transcriptomic responses of Lactobacillus brevis JLD715 to sodium selenite. J Sci Food Agric. [Epub: Ahead of Print] 33417239
Yang, Y., Y. Cui, W. Wang, L. Zhang, L. Bufford, S. Sasaki, Z. Fan, and H. Nishimura. (2004). Molecular and functional characterization of a vasotocin-sensitive aquaporin water channel in quail kidney. Am. J. Physiol. Regul Integr Comp Physiol 287: R915-924. 15205186
Yanochko, G.M. and A.J. Yool. (2004). Block by extracellular divalent cations of Drosophila big brain channels expressed in Xenopus oocytes. Biophys. J. 86: 1470-1478. 14990474
Yasui, M., A. Hazama, T.-H. Kwon, S. Nielsen, W.B. Guggino, and P. Agre. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature 402: 184-187. 10647010
Ye, Y., J. Ran, B. Yang, and Z. Mei. (2023). Aquaporins in Digestive System. Adv Exp Med Biol 1398: 145-154. 36717492
Yeste, M., R. Morató, J.E. Rodríguez-Gil, S. Bonet, and N. Prieto-Martínez. (2017). Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod Domest Anim 52Suppl4: 12-27. 29052330
Yi, X., X. Sun, R. Tian, K. Li, M. Ni, J. Ying, L. Xu, L. Liu, and Y. Wang. (2022). Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of Involved in Salt Stress. Front Plant Sci 13: 860742. 35909741
Yilmaz, O., F. Chauvigné, A. Ferré, F. Nilsen, P.G. Fjelldal, J. Cerdà, and R.N. Finn. (2020). Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 9:. 32664262
Yoo, Y.J., H.K. Lee, W. Han, D.H. Kim, M. Lee, J. Jeon, D.W. Lee, J. Lee, Y. Lee, J. Lee, J.S. Kim, Y. Cho, J.K. Han, and I. Hwang. (2016). Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol Plant. [Epub: Ahead of Print] 27142778
Yool, A.J. (2007). Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain. Gene Expr. 13: 329-337. 17708419
Yool, A.J. and E.M. Campbell. (2012). Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Aspects Med 33: 553-561. 22342689
Yu, X.S., X. Yin, E.M. Lafer, and J.X. Jiang. (2005). Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J. Biol. Chem. 280: 22081-22090. 15802270
Yusupov, M., J. Razzokov, R.M. Cordeiro, and A. Bogaerts. (2019). Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. Oxid Med Cell Longev 2019: 2930504. 31316715
Zardoya, R. and S. Villalba. (2001). A phylogenetic framework for the aquaporin family in eukaryotes. J. Mol. Evol. 52: 391-404. 11443343
Zeuthen T., B. Wu, S. Pavlovic-Djuranovic, L.M. Holm, N.L. Uzcategui, M. Duszenko, J.F. Kun, J.E. Schultz, E. Beitz. (2006). Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol. Microbiol. 61: 1598-1608. 16889642
Zhang, H. and A.S. Verkman. (2010). Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J. Biol. Chem. 285: 5896-5906. 20018876
Zhang, H., Z. Yang, G. Cheng, T. Luo, K. Zeng, W. Jiao, Y. Zhou, G. Huang, J. Zhang, and J. Xu. (2023). Sugarcane mosaic virus employs 6K2 protein to impair ScPIP2; 4 transport of H2O2 to facilitate virus infection. Plant Physiol. [Epub: Ahead of Print] 37930811
Zhang, W., A. Khan, J. Vitale, A. Neuner, K. Rink, C. Lüchtenborg, B. Brügger, T.H. Söllner, and E. Schiebel. (2021). A short perinuclear amphipathic α-helix in Apq12 promotes nuclear pore complex biogenesis. Open Biol 11: 210250. 34814743
Zhang, X., X. Ma, Y. Li, W. Yan, Q. Zheng, L. Li, Y. Yan, X. Liu, and J. Zheng. (2020). Dexamethasone Upregulates the Expression of Aquaporin4 by Increasing SUMOylation in A549 Cells. Inflammation 43: 1925-1935. 32495129
Zhang, Z., P. Xu, Z. Xie, F. Shen, N. Chen, L. Yu, and R. He. (2017). Downregulation of AQP2 in the anterior vaginal wall is associated with the pathogenesis of female stress urinary incontinence. Mol Med Rep 16: 3503-3509. 28713996
Zhao, C., Z. Liu, Y. Liu, and Y. Zhan. (2023). Identification and characterization of cold-responsive aquaporins from the larvae of a crambid pest (Eversmann) (Lepidoptera: Crambidae). PeerJ 11: e16403. 38025732
Zhao, R., X. Liang, M. Zhao, S.L. Liu, Y. Huang, S. Idell, X. Li, and H.L. Ji. (2014). Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLoS One 9: e109725. 25329998
Zhao, X.Q., N. Mitani, N. Yamaji, R.F. Shen, and J.F. Ma. (2010). Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 153: 1871-1877. 20498338
Zheng, J., R. Lin, L. Pu, Z. Wang, Q. Mei, M. Zhang, and S. Jian. (2021). Ectopic Expression of , a Plasma Membrane Intrinsic Protein Gene from the Halophyte , Enhances Drought and Salt-Alkali Stress Tolerance in Arabidopsis. Int J Mol Sci 22:. 33429984
Zheng, X., C. Li, K. Yu, S. Shi, H. Chen, Y. Qian, and Z. Mei. (2020). Aquaporin-9, Mediated by IGF2, Suppresses Liver Cancer Stem Cell Properties via Augmenting ROS/β-Catenin/FOXO3a Signaling. Mol Cancer Res 18: 992-1003. 32229502
Zhong, L., Y. Xia, T. He, S. Wenjie, A. Jinxia, Y. Lijun, and G. Hui. (2022). Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer. Acta Biomater. [Epub: Ahead of Print] 36115652
Zhou, Y., L. Li, J. Qian, H. Jia, and Y. Cui. (2018). Identification of three aquaporin subgroups from Blomia tropicalis by transcriptomics. Int J Mol Med. [Epub: Ahead of Print] 30221673
Zhou, Z., J. Zhan, Q. Cai, F. Xu, R. Chai, K. Lam, Z. Luan, G. Zhou, S. Tsang, M. Kipp, W. Han, R. Zhang, and A.C.H. Yu. (2022). The Water Transport System in Astrocytes-Aquaporins. Cells 11:. 36010640
Zhu, X., S. Wang, Y. Du, Z. Liang, H. Yao, X. Chen, and Z. Wu. (2023). A novel aquaporin Aagp contributes to HO efflux and virulence. Virulence 14: 2249789. 37621097
Zieger, E., T. Schwaha, K. Burger, I. Bergheim, A. Wanninger, and A.D. Calcino. (2022). Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 10: 894434. 35774230
Zwiazek, J.J., H. Xu, X. Tan, A. Navarro-Ródenas, and A. Morte. (2017). Significance of oxygen transport through aquaporins. Sci Rep 7: 40411. 28079178
Đurić, M.J., A.R. Subotić, L.T. Prokić, M.M. Trifunović-Momčilov, A.D. Cingel, M.B. Dragićević, A.D. Simonović, and S.M. Milošević. (2021). Molecular Characterization and Expression of Four Aquaporin Genes in During Drought Stress and Recovery. Plants (Basel) 10:. 33466920