TCID | Name | Domain | Kingdom/Phylum | Protein(s) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.I.1.1.1 | Nuclear Pore Complex (NPC) (Tran and Wente, 2006). The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central "triskeleton". 32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015). Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023). A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023). NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023). | Eukaryota |
Fungi, Ascomycota | Well-characterized nucleoporins of Saccharomyces cerevisiae CDC31p (161 aa; P06704) GLE1p (538 aa; Q12315) GLE2p (365 aa; P40066) Mex67 r and m RNA export factor (599aas; Q99257) Mlp1 (1875 aas; Q02455) Mlp2 (1679 aas; P40457) Mtr2 r and m RNA export regulator (184aas; P34232) Ndc1p (655 aa; NP_013681; P32500) Nic96p (839 aa; NP_116657; P34077) Nsp1p (823 aa; NP_012494; P14907) Nup1p (1076 aa; NP_014741; P20676) Nup2p (720 aa; AAB67259; P32499) Nup42p (430 aa; P49686) Nup49p (472 aa; NP_011343; Q02199) Nup53p (475 aa; NP_013873; Q03790) Nup57p (541 aa; NP_011634; P48837) Nup59p (528 aa; Q05166) Nup60p (539 aa; P39705) Nup82p (713 aa; NP_012474; P40368) Nup84p (726 aa; P52891) Nup85p (744 aa; P46673) Nup100p (959 aa; NP_012855; Q02629) Nup116p (1113 aa; NP_013762; Q02630) Nup120p (Rat2p) (1037 aa; NP_012866; P35729) Nup133p (Rat3p) (1157 aa; CAA56372; P36161) Nup145p (1317 aa; CAA54057; P49687) Nup157p (1391 aa; NP_011031; P40064) Nup159p (Rat7p) (1460 aa; NP_012151; P40477) Nup170p (1502 aa; NP_009474; P38181) Nup188p (1655 aa; NP_013604; P52593) Nup192p (1683 aa; P47054) Pom34p (299 aa; Q12445) Pom152p (1337 aa; CAA88554; P39685) Rip1p (215 aa; NP_010890; P08067) Seh1p (349 aa; P53011) Snl1p (159 aa; NP_012248; P40548) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.I.1.1.2 | Fungal Nuclear Pore Complex (NPC) with 29 components. Stuwe et al. 2015 presented the reconstitution of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. They proposed that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation (Stuwe et al. 2015 presented the reconstitution of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. They proposed that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation (Stuwe et al. 2015). | Eukaryota |
Fungi, Ascomycota | NPC of Chaetomium thermophilum Nucleoporin NUP192 (Nuclear pore protein NUP192); 1756aa; G0S4T0 Nucleoporin NUP145 (EC 3.4.21.-) (Nuclear pore protein NUP145) [Cleaved into: Nucleoporin NUP145N (N-NUP145); Nucleoporin NUP145C (C-NUP145)]; 1793aa; G0SAK3 Nucleoporin SEH1 (Nuclear pore protein SEH1); 538aa; G0S450 Nucleoporin GLE1 (Nuclear pore protein GLE1) (RNA export factor GLE1); 529aa; G0S7F3 Nucleoporin GLE2 (Nuclear pore protein GLE2); 357aa; G0SEA3 Nucleoporin NDC1 (Nuclear pore protein NDC1); 646aa; G0S235 Nucleoporin NUP82 (Nuclear pore protein NUP82); 882aa; G0S4F3 Nucleoporin POM152 (Nuclear pore protein POM152) (Pore membrane protein POM152); 1270aa; G0SB44 Protein transport protein SEC13; 308aa; G0SA60 Nucleoporin AMO1 (Nuclear pore protein AMO1); 557aa; G0S381 Nucleoporin NSP1 (Nuclear pore protein NSP1) (Nucleoskeletal-like protein); 678aa; G0SBQ3 Nucleoporin NUP152 (Nuclear pore protein NUP152); 1463aa; G0SDP9 Nucleoporin NUP159 (Nuclear pore protein NUP159); 1481aa; G0SBS8 Nucleoporin NUP53 (Nuclear pore protein NUP53); 426aa; G0S156 Nucleoporin NUP49 (Nuclear pore protein NUP49); 470aa; G0S4X2 Nucleoporin NUP57 (Nuclear pore protein NUP57); 326aa; G0S0R2 Nucleoporin NUP56 (Nuclear pore protein NUP56); 524aa; G0S8I1 Protein ELYS; 299aa; G0S2G1 Nucleoporin NIC96 (Nuclear pore protein NIC96); 1112aa; G0S024 Nucleoporin NUP120 (Nuclear pore protein NUP120); 1262aa; G0S0E7 Nucleoporin NUP133 (Nuclear pore protein NUP133); 1364aa; G0S9A7 Nucleoporin NUP170 (Nuclear pore protein NUP170); 1416aa; G0S7B6 Nucleoporin NUP188 (Nuclear pore protein NUP188); 1858aa; G0SFH5 Nucleoporin NUP84 (Nuclear pore protein NUP84); 948aa; G0SER9 Nucleoporin NUP85 (Nuclear pore protein NUP85); 1169aa; G0SDQ4 Nucleoporin NUP37 (Nuclear pore protein NUP37); 751aa; G0S2X1 Nucleoporin POM33 (Nuclear pore protein POM33) (Pore membrane protein of 33 kDa); 287aa; G0S6T0 Nucleoporin POM34 (Nuclear pore protein POM34) (Pore membrane protein of 34 kDa); 326aa; G0S7R3 Protein MLP1 homologue; 2085aa; G0SA56 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.I.1.1.3 | Nuclear Pore Complex, NPC, with 86 protein components. NPCs mediate nucleocytoplasmic transport and gain transport selectivity through nucleoporin FG domains. Chug et al. 2015 reported a structural analysis of the frog FG Nup62•58•54 complex. It comprises a ≈13 nanometer-long trimerization interface with an unusual 2W3F coil, a canonical heterotrimeric coiled coil, and a kink that enforces a compact six-helix bundle. Nup54 also contains a ferredoxin-like domain. Chug et al. 2015 further identified a heterotrimeric Nup93-binding module for NPC anchorage. The quaternary structure alternations in the Nup62 complex, which were previously proposed to trigger a general gating of the NPC, are incompatible with the trimer structure. Chug et al. 2015 suggested that the highly elongated Nup62 complex projects barrier-forming FG repeats far into the central NPC channel, supporting a barrier that guards the entire cross section. The Sun1/UNC84A protein and Sun2/UNC84B may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis (Schaller et al. 2017). The integral transmembrane nucleoporin Pom121 functionally links nuclear pore complex assembly to nuclear envelope formation (Antonin et al. 2005) and ensures efficient HIV-1 pre-integration complex nuclear import (Guo et al. 2018). Mechanosensing at the nuclear envelope by nuclear pore complex stretch activation involves cell membrane integrins (TC# 8.A.54) and SUN proteins, SUN1 and SUN2, in the nuclear membrane (Donnaloja et al. 2019). TMX2 is a thioredoxin-like protein that facilitates the transport of proteins across the nuclear membrane (Oguro and Imaoka 2019). Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of the myelokd leukemia factor 2, MLF2 (Rampello et al. 2020). Cdk1 (CDC2, CDC2.8A, CDKN1, P34CDC2) acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry (Lupberger et al. 2011). G4C2 repeat RNA initiates a POM121-mediated reduction in specific nucleoporins (Coyne et al. 2020) (Pom121: acc# A8CG34). Defects in nucleocytoplasmic transport and accumulation of specific nuclear-pore-complex-associated proteins play roles in multiple neurodegenerative diseases, including C9orf72 Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS/FTD). Using super-resolution structured illumination microscopy, Coyne et al. 2020 have explored the mechanism by which nucleoporins are altered in nuclei isolated from C9orf72 induced pluripotent stem-cell-derived neurons (iPSNs). Of the 23 nucleoporins evaluated, they observed a reduction in a subset of 8, including key components of the nuclear pore complex scaffold and the transmembrane nucleoporin POM121. Reduction in POM121 appeared to initiate a decrease in the expression of seven additional nucleoporins, ultimately affecting the localization of the Ran GTPase and subsequent cellular toxicity in C9orf72 iPSNs. Thus, the expression of expanded C9orf72 ALS/FTD repeat RNA affects nuclear POM121 expression in the initiation of a pathological cascade affecting nucleoporin levels within neuronal nuclei and ultimately downstream neuronal survival (Coyne et al. 2020). Involved in the organization of the nuclear envelope, implicating EMD, SUN1 and A-type lamina (Gudise et al. 2011), but it also promotes breast cancer metastasis by positively regulating TGFbeta signaling (Kong et al. 2021). Nucleoporin POM121 signals TFEB-mediated autophagy via activation of the SIGMAR1/sigma-1 receptor chaperone by pridopidine (Wang et al. 2022). AI-based structural prediction empowers integrative structural analysis of human nuclear pores (Mosalaganti et al. 2022). With a molecular weight of approximately 120 MDa, the human NPC is one of the largest protein complexes. Its ~1000 proteins are taken in multiple copies from a set of about 30 distinct nucleoporins (NUPs). They can be roughly categorized into two classes. Scaffold NUPs contain folded domains and form a cylindrical scaffold architecture around a central channel. Intrinsically disordered NUPs line the scaffold and extend into the central channel where they interact with cargo complexes. The NPC architecture is highly dynamic. It responds to changes in nuclear envelope tension with conformational breathing that manifests in dilation and constriction movements. AI-based predictions generated an extensive repertoire of structural models of human NUPs and their subcomplexes (Mosalaganti et al. 2022). The 70-MDa atomically resolved model covers >90% of the human NPC scaffold. It captures conformational changes that occur during dilation and constriction. It also reveals the precise anchoring sites for intrinsically disordered NUPs, the identification of which is a prerequisite for a complete and dynamic model of the NPC. This exempli-fies how AI-based structure predictions may accelerate the elucidation of subcellular architecture at atomic resolution. The nucleocytoplasmic transport protein, importin-5, plays a role in the crosstalk between activin and BMP signalling in human testicular cancer cell lines (Radhakrishnan et al. 2023). Viral targeting of importin alpha-mediated nuclear import blocks innate immunity (Vogel et al. 2023). The nuclear pore protein POM121 regulates subcellular localization and transcriptional activity of PPARgamma. (Yu et al. 2024). Stabilization of KPNB1 by deubiquitinase USP7 promotes glioblastoma progression through the YBX1-NLGN3 axis (Li et al. 2024). Retroviral hijacking of host transport pathways are used for viral genome nuclear export (Behrens and Sherer 2023). Biallelic variants in AAAS, encoding ALADIN, cause triple A syndrome (Allgrove syndrome). Triple A syndrome, characterized by alacrima, achalasia, and adrenal insufficiency, often includes progressive demyelinating polyneuropathy and other neurological complaints (Smits et al. 2024).
| Eukaryota |
Metazoa, Chordata | NPC of Homo sapiens
Nuclear pore complex protein Nup98-Nup96 [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)]; 1817aa; P52948 Nuclear pore membrane glycoprotein 210 (Nuclear pore protein gp210) (Nuclear envelope pore membrane protein POM 210) (POM210) (Nucleoporin Nup210) (Pore membrane protein of 210 kDa); 1887aa; Q8TEM1 Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50); 468aa; Q9UKX7 Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa); 1249aa; Q96HA1 Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C); 1229aa; A8CG34 Nuclear pore complex-interacting protein family member A1 (Nuclear pore complex-interacting protein) (NPIP); 350aa; Q9UND3 Nuclear pore complex protein Nup107 (107 kDa nucleoporin) (Nucleoporin Nup107); 925aa; P57740 Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153); 1475aa; P49790 Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93); 819aa; Q8N1F7 Nuclear pore complex protein Nup205 (205 kDa nucleoporin) (Nucleoporin Nup205); 2012aa; Q92621 Nuclear pore complex protein Nup85 (85 kDa nucleoporin) (FROUNT) (Nucleoporin Nup75) (Nucleoporin Nup85) (Pericentrin-1); 656aa; Q9BW27 Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155); 1391aa; O75694 Nucleoporin NUP53 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin Nup35); 326aa; Q8NFH5 Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88); 741aa; Q99567 Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133); 1156aa; Q8WUM0 Nuclear pore complex protein Nup160 (160 kDa nucleoporin) (Nucleoporin Nup160); 1436aa; Q12769 Importin subunit beta-1 (Importin-90) (Karyopherin subunit beta-1) (Nuclear factor p97) (Pore targeting complex 97 kDa subunit) (PTAC97); 876aa; Q14974 E3 SUMO-protein ligase RanBP2 (EC 6.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270); 3224aa; P49792 Nuclear pore complex protein Nup214 (214 kDa nucleoporin) (Nucleoporin Nup214) (Protein CAN); 2090aa; P35658 Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein); 2363aa; P12270 Nuclear pore glycoprotein p62 (62 kDa nucleoporin) (Nucleoporin Nup62); 522aa; P37198 Nuclear pore-associated protein 1; 1156aa; Q9NZP6 Putative nuclear envelope pore membrane protein POM 121B; 834aa; A6NF01 Germinal-center associated nuclear protein (GANP) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase); 1980aa; O60318 Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1); 2266aa; Q8WYP5 Nucleoporin NDC1 (hNDC1; TMEM48;Transmembrane protein 48); 674aa and 5 TMSs; Q9BTX1 Nucleoporin Nup43 (Nup107-160 subcomplex subunit Nup43) (p42); 380aa; Q8NFH3 Nucleoporin-like protein 2 (NLP-1) (NUP42 homologue) (Nucleoporin hCG1); 423aa; O15504 Protein SEC13 homologue (SEC13-like protein 1) (SEC13-related protein); 322aa; P55735 Nucleoporin GLE1 (hGLE1) (GLE1-like protein); 698aa; Q53GS7 Importin subunit alpha-5 (Karyopherin subunit alpha-1) (Nucleoprotein interactor 1) (NPI-1) (RAG cohort protein 2) (SRP1-beta) [Cleaved into: Importin subunit alpha-5, N-terminally processed]; 538aa; P52294 Nucleoporin NUP188 homologue (hNup188); 1749aa; Q5SRE5 Transportin-1 (Importin beta-2) (Karyopherin beta-2) (M9 region interaction protein) (MIP); 898aa; Q92973 Importin-7 (Imp7) (Ran-binding protein 7) (RanBP7); 1038aa; O95373 Importin-5 (Imp5) (Importin subunit beta-3) (Karyopherin beta-3) (Ran-binding protein 5) (RanBP5); 1097aa; O00410 Importin subunit alpha-4 (Importin alpha Q2) (Qip2) (Karyopherin subunit alpha-3) (SRP1-gamma); 521aa; O00505 Ran GTPase-activating protein 1 (RanGAP1); 587aa; P46060 SUN domain-containing protein 1 (Protein unc-84 homologue A) (Sad1/unc-84 protein-like 1); 812aa; O94901 Major vault protein (MVP) (Lung resistance-related protein); 893aa; Q14764 Importin-4 (Imp4) (Importin-4b) (Imp4b) (Ran-binding protein 4) (RanBP4); 1081aa; Q8TEX9 Importin subunit alpha-3 (Importin alpha Q1) (Qip1) (Karyopherin subunit alpha-4); 521aa; O00629 Importin-13 (Imp13) (Karyopherin-13) (Kap13) (Ran-binding protein 13) (RanBP13); 963aa; O94829 Sentrin-specific protease 2 (EC 3.4.22.68) (Axam2) (SMT3-specific isopeptidase 2) (Smt3ip2) (Sentrin/SUMO-specific protease SENP2); 589aa; Q9HC62 Exportin-T (Exportin(tRNA)) (tRNA exportin); 962aa; O43592 ATP-dependent RNA helicase DDX19B (EC 3.6.4.13) (DEAD box RNA helicase DEAD5) (DEAD box protein 19B); 479aa; Q9UMR2 Importin-9 (Imp9) (Ran-binding protein 9) (RanBP9); 1041aa; Q96P70 Tankyrase-1 (TANK1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 5) (ARTD5) (Poly [ADP-ribose] polymerase 5A) (TNKS-1) (TRF1-interacting ankyrin-related ADP-ribose polymerase) (Tankyrase I); 1327aa; O95271 Importin subunit alpha-7 (Karyopherin subunit alpha-6); 536aa; O60684 Exportin-1 (Exp1) (Chromosome region maintenance 1 protein homologue); 1071aa; O14980 Nucleoporin Nup37 (p37) (Nup107-160 subcomplex subunit Nup37); 326aa; Q8NFH4 Interferon-induced GTP-binding protein Mx2 (Interferon-regulated resistance GTP-binding protein MxB) (Myxovirus resistance protein 2) (p78-related protein); 715aa; P20592 Exportin-5 (Exp5) (Ran-binding protein 21); 1204aa; Q9HAV4 Aladin (Adracalin); 546aa; Q9NRG9 Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha); 529aa; P52292 Exportin-4 (Exp4); 1151aa; Q9C0E2 mRNA export factor (Rae1 protein homologue) (mRNA-associated protein mrnp 41); 368aa; P78406 G2/mitotic-specific cyclin-B1; 433aa; P14635 Exportin-2 (Exp2) (Cellular apoptosis susceptibility protein) (Chromosome segregation 1-like protein) (Importin-alpha re-exporter); 971aa; P55060 Potassium voltage-gated channel subfamily H member 1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (h-eag) (hEAG1) (Voltage-gated potassium channel subunit Kv10.1); 989aa; O95259 Unconventional myosin-Ic (Myosin I beta) (MMI-beta) (MMIb); 1063aa; O00159 CBP80/20-dependent translation initiation factor; 598aa; O43310 Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8); 979aa; Q8TD19 Eukaryotic translation initiation factor 5A-1 (eIF-5A-1) (eIF-5A1) (Eukaryotic initiation factor 5A isoform 1) (eIF-5A) (Rev-binding factor) (eIF-4D); 154aa; P63241 Nucleoporin SEH1 (Nup107-160 subcomplex subunit SEH1) (SEC13-like protein); 360aa; Q96EE3 Serine/threonine-protein kinase Nek7 (EC 2.7.11.1) (Never in mitosis A-related kinase 7) (NimA-related protein kinase 7); 302aa; Q8TDX7 Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (EC 2.7.11.23) (Cell division control protein 2 homologue) (Cell division protein kinase 1) (p34 protein kinase); 297aa; P06493 Serine/threonine-protein kinase Nek6 (EC 2.7.11.1) (Never in mitosis A-related kinase 6) (NimA-related protein kinase 6) (Protein kinase SID6-1512); 313aa; Q9HC98 Exportin-7 (Exp7) (Ran-binding protein 16); 1087aa; Q9UIA9 ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (Helicase-like protein 2) (HLP2); 662aa; O00571 Transportin-2 (Karyopherin beta-2b); 897aa; O14787 Transcription and mRNA export factor ENY2 (Enhancer of yellow 2 transcription factor homologue); 101aa; Q9NPA8 Nucleoporin p58/p45 (Nucleoporin-like protein 1); 599aa; Q9BVL2 Nucleoporin p54 (54 kDa nucleoporin); 507aa; Q7Z3B4 Importin subunit alpha-6 (Karyopherin subunit alpha-5); 536aa; O15131 Importin-11 (Imp11) (Ran-binding protein 11) (RanBP11); 975aa; Q9UI26 Importin-8 (Imp8) (Ran-binding protein 8) (RanBP8); 1037aa; O15397 ATP-dependent RNA helicase DDX19A (EC 3.6.4.13) (DDX19-like protein) (DEAD box protein 19A); 478aa; Q9NUU7 Double homeobox protein 4 (Double homeobox protein 10); 424aa; Q9UBX2 Eukaryotic translation initiation factor 5A-2 (eIF-5A-2) (eIF-5A2) (Eukaryotic initiation factor 5A isoform 2); 153aa; Q9GZV4 G2/mitotic-specific cyclin-B2; 398aa; O95067 Double homeobox protein 1; 170aa; O43812 Ran-binding protein 17; 1088aa; Q9H2T7 Eukaryotic translation initiation factor 5A-1-like (eIF-5A-1-like) (eIF-5A1-like) (Eukaryotic initiation factor 5A isoform 1-like); 154aa; Q6IS14 Transcription and mRNA export factor ENY2 (Enhancer of yellow 2 transcription factor homologue); 100aa; E5RHX8 Transcription and mRNA export factor ENY2 (Enhancer of yellow 2 transcription factor homologue); 101aa; A0A024R9D9 Nucleoporin NUP53; 326aa; A8K3Z5 SUN2; UNC84B; FRIGG of 717 aas and 3 TM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.I.1.1.4 | Ciliate nucleopore complex, NPC. Regulates protein import and nuclear division (Malone et al. 2008). The NPC contributes to nucleus-selective transport in ciliates (Iwamoto et al. 2009). The transmembrane components, Pom121 and Pom82, localize exclusively to the macro (MAC)- and micro (MIC)-nuclear NPCs, respectively. Functional nuclear dimorphism in ciliates is likely to depend on compositional and structural specificity of the NPCs (Iwamoto et al. 2017). | Eukaryota |
Ciliophora | NPC of Tetrahymena thermophila Nucleoporins gp210 of 1927 aas, Nup155 of 2039 aas, MicNup98A (Nup4) of 942 aas, Nup50 (Nup1) of 414 aas, MacNup98A (Nup2) of 1105 aas, MacNup98B (Nup3) of 815 aas, MacNup98B-Nup96 (Nup5) of 2003 aas, Seh (Seh1) of 365 aas, Nup93 of 962 aas, Nup308 of 2,675 aas, Nup54 of 322 aas. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.I.1.1.5 | The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export (Batsios et al. 2019). The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins, and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector, both of which lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and appropriate spindle formation. Centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors (Batsios et al. 2019). | Eukaryota |
Evosea | Nuclear Membrane Complex of Dictyosteilium discoidium
|