TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.1.1.29
Glucosamine/glucose/fructose uniporter, Glut-2, Glut2 or ATG9A; it may also transport dehydroascorbate (Mardones et al., 2011Maulén et al., 2003), and cotransports water against an osmotic gradient (Naftalin, 2008).  Mutations may give rise to the rare autosomal recessive Fanconi-Bickel syndrome (Batool et al. 2019). It mediates intestinal transport of quercetrin (Li et al. 2020) and can transport the drug gastrodin, a seditive with a strcture of a phenolic glucoside (Huang et al. 2023). It also functions in autophagy. The cryoEM structure of the human ATG9A isoform at 2.9-Å resolution has been solved (Guardia et al. 2020). The structure reveals a fold with a homotrimeric domain-swapped architecture, multiple membrane spans, and a network of branched cavities, consistent with ATG9A being a membrane transporter. Mutational analyses support a role for the cavities in the functions of ATG9A. Structure-guided molecular simulations predict that ATG9A causes membrane bending, explaining the localization of this protein to small vesicles and highly curved edges of growing autophagosomes (Guardia et al. 2020). Both GLUT2 and GLUT3 have been expressed in yeast and exhibit most of the characteristics of the proteins expressed in humans (Schmidl et al. 2020). Autophagy is a highly conserved pathway that the cell uses to maintain homeostasis, degrade damaged organelles, combat invading pathogens, and survive pathological conditions. A set of proteins, called ATG proteins, comprise the core autophagy machinery and work together in a defined hierarchy. ATG9A vesicles are at the heart of autophagy, as they control the rapid de novo synthesis of an organelle called the phagophore. ATG9A is present in different membrane compartments (van Vliet et al. 2023).  Metformin increases the uptake of glucose into the gut from the circulation in high-fat diet-fed male mice, which is enhanced by a reduction in whole-body Slc2a2 expression (Morrice et al. 2023).  Increased expression of Glucose Transporter 2 (GLUT2) is observed on the peripheral blood insulin-producing cells (PB-IPC) in type 1 diabetic patients after receiving stem cell educator therapy (Zhao et al. 2024).  

Accession Number:P11168
Protein Name:Gtr2 aka Glut2 aka SLC2A2
Length:524
Molecular Weight:57490.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Membrane1 / Multi-pass membrane protein2
Substrate water, dehydroascorbic acid, quercetin, glucosamine, glucose, fructose

Cross database links:

RefSeq: NP_000331.1   
Entrez Gene ID: 6514   
Pfam: PF00083   
OMIM: 138160  gene
227810  phenotype
KEGG: hsa:6514    hsa:6514   

Gene Ontology

GO:0005887 C:integral to plasma membrane
GO:0005624 C:membrane fraction
GO:0005975 P:carbohydrate metabolic process
GO:0015758 P:glucose transport
GO:0055085 P:transmembrane transport
GO:0016323 C:basolateral plasma membrane
GO:0031526 C:brush border membrane
GO:0005829 C:cytosol
GO:0005768 C:endosome
GO:0055056 F:D-glucose transmembrane transporter activity
GO:0033300 F:dehydroascorbic acid transporter activity
GO:0005355 F:glucose transmembrane transporter activity
GO:0031018 P:endocrine pancreas development
GO:0006112 P:energy reserve metabolic process
GO:0015755 P:fructose transport
GO:0050796 P:regulation of insulin secretion
GO:0009749 P:response to glucose stimulus
GO:0043434 P:response to peptide hormone stimulus
GO:0044281 P:small molecule metabolic process

References (14)

[1] “Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein.”  Fukumoto H.et.al.   3399500
[2] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[3] “Sequence variations of the pancreatic islet/liver glucose transporter (GLUT2) gene in Japanese subjects with noninsulin dependent diabetes mellitus.”  Matsubara A.et.al.   7593414
[4] “Variability of the pancreatic islet beta cell/liver (GLUT 2) glucose transporter gene in NIDDM patients.”  Tanizawa Y.et.al.   8063045
[5] “A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity.”  Mueckler M.et.al.   8027028
[6] “A mutation in GLUT2, not in phosphorylase kinase subunits, in hepato-renal glycogenosis with Fanconi syndrome and low phosphorylase kinase activity.”  Burwinkel B.et.al.   10987651
[7] “Mutation analysis of the GLUT2 gene in patients with Fanconi-Bickel syndrome.”  Sakamoto O.et.al.   11044475
[8] “Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein.”  Fukumoto H.et.al.   3399500
[9] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[10] “Sequence variations of the pancreatic islet/liver glucose transporter (GLUT2) gene in Japanese subjects with noninsulin dependent diabetes mellitus.”  Matsubara A.et.al.   7593414
[11] “Variability of the pancreatic islet beta cell/liver (GLUT 2) glucose transporter gene in NIDDM patients.”  Tanizawa Y.et.al.   8063045
[12] “A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity.”  Mueckler M.et.al.   8027028
[13] “A mutation in GLUT2, not in phosphorylase kinase subunits, in hepato-renal glycogenosis with Fanconi syndrome and low phosphorylase kinase activity.”  Burwinkel B.et.al.   10987651
[14] “Mutation analysis of the GLUT2 gene in patients with Fanconi-Bickel syndrome.”  Sakamoto O.et.al.   11044475

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MTEDKVTGTL VFTVITAVLG SFQFGYDIGV INAPQQVIIS HYRHVLGVPL DDRKAINNYV 
61:	INSTDELPTI SYSMNPKPTP WAEEETVAAA QLITMLWSLS VSSFAVGGMT ASFFGGWLGD 
121:	TLGRIKAMLV ANILSLVGAL LMGFSKLGPS HILIIAGRSI SGLYCGLISG LVPMYIGEIA 
181:	PTALRGALGT FHQLAIVTGI LISQIIGLEF ILGNYDLWHI LLGLSGVRAI LQSLLLFFCP 
241:	ESPRYLYIKL DEEVKAKQSL KRLRGYDDVT KDINEMRKER EEASSEQKVS IIQLFTNSSY 
301:	RQPILVALML HVAQQFSGIN GIFYYSTSIF QTAGISKPVY ATIGVGAVNM VFTAVSVFLV 
361:	EKAGRRSLFL IGMSGMFVCA IFMSVGLVLL NKFSWMSYVS MIAIFLFVSF FEIGPGPIPW 
421:	FMVAEFFSQG PRPAALAIAA FSNWTCNFIV ALCFQYIADF CGPYVFFLFA GVLLAFTLFT 
481:	FFKVPETKGK SFEEIAAEFQ KKSGSAHRPK AAVEMKFLGA TETV