TCDB is operated by the Saier Lab Bioinformatics Group

2.A.2 The Glycoside-Pentoside-Hexuronide (GPH):Cation Symporter Family

GPH:cation symporters catalyze uptake of sugars (mostly, but not exclusively, glycosides) in symport with a monovalent cation (H+ or Na+). Mutants of two groups of these symporters (the melibiose permeases of enteric bacteria and the lactose permease of Streptococcus thermophilus) have been isolated and in which altered cation specificity is observed or in which sugar transport is uncoupled from cation symport (i.e., uniport is catalyzed). The various members of the family can use Na+, H+ or Li, Na+ or Li+, H+ or Li+, or only H+ as the symported cation. Most functionally characterized and sequenced members of the family are from bacteria except the distantly related sucrose:H+ symporters of plants and a yeast maltose/sucrose:H+ symporter of S. pombe. This yeast protein is about 24% identical to the plant sucrose:H+ symporters and is more distantly related to the bacterial members of the GPH family (Reinders and Ward, 2001). Homologues are found in archaea and all eukaryotic kingdoms.

Proteins of the GHP family are generally about 500 amino acids in length, although the Gram-positive bacterial lactose permeases are larger, due to a C-terminal hydrophilic domain that is involved in regulation by the phosphotransferase system (TC #4.A.1). All of these proteins possess twelve The GPH family is a member of the MFS. One member of the GPH family, LacS of Streptococcus thermophilus, appears to be a cooperative dimer with one sugar translocation pathway per monomer (Veenhoff et al., 2001).

X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding. Markham et al. 2021 generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. 105 mutants (21%) exhibited poor transport activities, although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. TMSs I and X and transmembrane residues, Asp and Tyr, are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport (Markham et al. 2021).

The generalized transport reaction catalyzed by the GPH:cation symporter family is:

Sugar (out) + [H+ or Na+] (out) → Sugar (in) + [H+ or Na+] (in).

 

 

This family belongs to the: Major Facilitator (MFS) Superfamily.

References associated with 2.A.2 family:

Adelmann, C.H., A.K. Traunbauer, B. Chen, K.J. Condon, S.H. Chan, T. Kunchok, C.A. Lewis, and D.M. Sabatini. (2020). MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588: 699-704. 33208952
Adhikari, K., J. Mendoza-Revilla, A. Sohail, M. Fuentes-Guajardo, J. Lampert, J.C. Chacón-Duque, M. Hurtado, V. Villegas, V. Granja, V. Acuña-Alonzo, C. Jaramillo, W. Arias, R.B. Lozano, P. Everardo, J. Gómez-Valdés, H. Villamil-Ramírez, C.C. Silva de Cerqueira, T. Hunemeier, V. Ramallo, L. Schuler-Faccini, F.M. Salzano, R. Gonzalez-José, M.C. Bortolini, S. Canizales-Quinteros, C. Gallo, G. Poletti, G. Bedoya, F. Rothhammer, D.J. Tobin, M. Fumagalli, D. Balding, and A. Ruiz-Linares. (2019). A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat Commun 10: 358. 30664655
Andersen, J.M., R. Barrangou, M. Abou Hachem, S. Lahtinen, Y.J. Goh, B. Svensson, and T.R. Klaenhammer. (2011). Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. Proc. Natl. Acad. Sci. USA 108: 17785-17790. 22006318
Anzai, T. and Y. Matsumura. (2019). Topological analysis of TMEM180, a newly identified membrane protein that is highly expressed in colorectal cancer cells. Biochem. Biophys. Res. Commun. [Epub: Ahead of Print] 31615651
Bartölke, R., J.J. Heinisch, H. Wieczorek, and O. Vitavska. (2014). Proton-associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. Biochem. J. 464: 193-201. 25164149
Bassik, M.C. and M. Kampmann. (2011). Knocking out the door to tunicamycin entry. Proc. Natl. Acad. Sci. USA 108: 11731-11732. 21734150
Carpaneto, A., D. Geiger, E. Bamberg, N. Sauer, J. Fromm, and R. Hedrich. (2005). Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J. Biol. Chem. 280: 21437-21443. 15805107
Carpaneto, A., H. Koepsell, E. Bamberg, R. Hedrich, and D. Geiger. (2010). Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1. PLoS One 5: e12605. 20838661
Cater, R.J., G.L. Chua, S.K. Erramilli, J.E. Keener, B.C. Choy, P. Tokarz, C.F. Chin, D.Q.Y. Quek, B. Kloss, J.G. Pepe, G. Parisi, B.H. Wong, O.B. Clarke, M.T. Marty, A.A. Kossiakoff, G. Khelashvili, D.L. Silver, and F. Mancia. (2021). Structural basis of omega-3 fatty acid transport across the blood-brain barrier. Nature. [Epub: Ahead of Print] 34135507
Chaillou, S., P.W. Postma, and P.H. Pouwels. (1998). Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus. J. Bacteriol. 180: 4011-4014. 9683504
Crawford, N.G., D.E. Kelly, M.E.B. Hansen, M.H. Beltrame, S. Fan, S.L. Bowman, E. Jewett, A. Ranciaro, S. Thompson, Y. Lo, S.P. Pfeifer, J.D. Jensen, M.C. Campbell, W. Beggs, F. Hormozdiari, S.W. Mpoloka, G.G. Mokone, T. Nyambo, D.W. Meskel, G. Belay, J. Haut, , H. Rothschild, L. Zon, Y. Zhou, M.A. Kovacs, M. Xu, T. Zhang, K. Bishop, J. Sinclair, C. Rivas, E. Elliot, J. Choi, S.A. Li, B. Hicks, S. Burgess, C. Abnet, D.E. Watkins-Chow, E. Oceana, Y.S. Song, E. Eskin, K.M. Brown, M.S. Marks, S.K. Loftus, W.J. Pavan, M. Yeager, S. Chanock, and S.A. Tishkoff. (2017). Loci associated with skin pigmentation identified in African populations. Science 358:. 29025994
Denger, K., M. Weiss, A.K. Felux, A. Schneider, C. Mayer, D. Spiteller, T. Huhn, A.M. Cook, and D. Schleheck. (2014). Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 507: 114-117. 24463506
Deol KK., Mukherjee S., Gao F., Brule-Babel A., Stasolla C. and Ayele BT. (2013). Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 13:181. 24237613
Du, J. and D.E. Fisher. (2002). Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J. Biol. Chem. 277: 402-406. 11700328
Ethayathulla, A.S., M.S. Yousef, A. Amin, G. Leblanc, H.R. Kaback, and L. Guan. (2014). Structure-based mechanism for Na+/melibiose symport by MelB. Nat Commun 5: 3009. 24389923
Granell, M., X. León, G. Leblanc, E. Padrós, and V.A. Lórenz-Fonfría. (2010). Structural insights into the activation mechanism of melibiose permease by sodium binding. Proc. Natl. Acad. Sci. USA 107: 22078-22083. 21135207
Grossiord, B.P., E.J. Luesink, E.E. Vaughan, A. Arnaud, and W.M. de Vos. (2003). Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway. J. Bacteriol. 185: 870-878. 12533462
Hariharan, P. and L. Guan. (2014). Insights into the inhibitory mechanisms of the regulatory protein IIA(Glc) on melibiose permease activity. J. Biol. Chem. 289: 33012-33019. 25296751
Hédan, B., E. Cadieu, N. Botherel, C. Dufaure de Citres, A. Letko, M. Rimbault, C. Drögemüller, V. Jagannathan, T. Derrien, S. Schmutz, T. Leeb, and C. André. (2019). Identification of a Missense Variant in Involved in Dilution of Phaeomelanin Leading to White or Cream Coat Color in Dogs. Genes (Basel) 10:. 31117290
Heuberger, E.H., E. Smits, and B. Poolman. (2001). Xyloside transport by XylP, a member of the galactoside-pentoside-hexuronide family. J. Biol. Chem. 276: 34465-34472. 11408491
Hugouvieux-Cotte-Pattat, N. and S. Reverchon. (2001). Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Molec. Microbiol. 41: 1125-1132. 11555292
Inagaki, K., T. Suzuki, S. Ito, N. Suzuki, K. Adachi, T. Okuyama, Y. Nakata, H. Shimizu, H. Matsuura, T. Oono, H. Iwamatsu, M. Kono, and Y. Tomita. (2006). Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes. Pigment Cell Res 19: 451-453. 16965274
Kamaraj, B. and R. Purohit. (2016). Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4) - A Molecular Dynamics Approach. J. Cell. Biochem. [Epub: Ahead of Print] 27019209
Khuller, K., G. Yigit, C.M. Grijalva, J. Altmüller, H. Thiele, P. Nürnberg, N.H. Elcioglu, B. Yeter, U. Hehr, A. Stein, A. Della Marina, A. Köninger, C. Depienne, F.J. Kaiser, B. Wollnik, and A. Kuechler. (2021). MFSD2A-associated primary microcephaly - Expanding the clinical and mutational spectrum of this ultra-rare disease. Eur J Med Genet 104310. [Epub: Ahead of Print] 34400370
Laikova, O.N., A.A. Mironov, and M.S. Gelfand. (2001). Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria. FEMS Microbiol. Lett. 205: 315-322. 11750821
Lewis, S.S. and K.M. Girisha. (2019). Whole exome sequencing identifies a novel pathogenic variation [p.(Gly194valfs*7)] in SLC45A2 in the homozygous state in multiple members of a family with oculocutaneous albinism in southern India. Clin Exp Dermatol. [Epub: Ahead of Print] 31630438
Liang, W.-J., K.J. Wilson, H. Xie, J. Knol, S. Suzuki, N.G. Rutherford, P.J.F. Henderson, and R.A. Jefferson. (2005). The gusBC genes of Escherichia coli encode a glucuronide transport system. J. Bacteriol. 187: 2377-2385. 15774881
Lohmiller, S., K. Hantke, S.I. Patzer, and V. Braun. (2008). TonB-dependent maltose transport by Caulobacter crescentus. Microbiology 154: 1748-1754. 18524929
Markham, K.J., E.B. Tikhonova, A.C. Scarpa, P. Hariharan, S. Katsube, and L. Guan. (2021). Complete cysteine-scanning mutagenesis of the Salmonella typhimurium melibiose permease. J. Biol. Chem. 101090. [Epub: Ahead of Print] 34416232
Meyer S., M. Melzer, E. Truernit, C. Hümmer, R. Besenbeck, R. Stadler, N. Sauer. (2000). AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J. 24: 869-882 11135120
Meyer, H., O. Vitavska, and H. Wieczorek. (2011). Identification of an animal sucrose transporter. J Cell Sci 124: 1984-1991. 21586609
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Naderi, S. and M.H. Saier, Jr. (1996). Plant sucrose:H+ symporters are homologous to the melibiose permease of Escherichia coli. Molec. Microbiol. 22: 389-391. 8930923
Osanai-Futahashi M., Tatematsu K., Yamamoto K., Narukawa J., Uchino K., Kayukawa T., Shinoda T., Banno Y., Tamura T. and Sezutsu H. (2012). Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. J Biol Chem. 287(21):17706-14. 22474291
Pommerrenig B., Popko J., Heilmann M., Schulmeister S., Dietel K., Schmitt B., Stadler R., Feussner I. and Sauer N. (2013). SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation. Plant J. 73(3):392-404. 23031218
Poolman, B., J. Knol, C. van der Does, P.J.F. Henderson, W.-J. Liang, G. Leblanc, T. Pourcher, and I. Mus-Veteau. (1996). Cation and sugar selectivity determinants in a novel family of transport proteins. Molec. Microbiol. 19: 911-922. 8830272
Quek, D.Q., L.N. Nguyen, H. Fan, and D.L. Silver. (2016). Structural insights into the transport mechanism of the human sodium-dependent lysophosphatidylcholine transporter Mfsd2a. J. Biol. Chem. [Epub: Ahead of Print] 26945070
Reiling, J.H., C.B. Clish, J.E. Carette, M. Varadarajan, T.R. Brummelkamp, and D.M. Sabatini. (2011). A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proc. Natl. Acad. Sci. USA 108: 11756-11765. 21677192
Reinders, A. and J.M. Ward. (2001). Functional characteristic of the α-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homologue of plant sucrose transporters. Molec. Microbiol. 39: 445-454. 11136464
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1994). A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta 1197: 133-166. 8031825
Rodionov, D.A., C. Yang, X. Li, I.A. Rodionova, Y. Wang, A.Y. Obraztsova, O.P. Zagnitko, R. Overbeek, M.F. Romine, S. Reed, J.K. Fredrickson, K.H. Nealson, and A.L. Osterman. (2010). Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics 11: 494. 20836887
Rodionov, D.A., M.S. Gelfand, and N. Hugouvieux-Cotte-Pattat. (2004). Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other γ-proteobacteria. Microbiology 150: 3571-3590. 15528647
Rodríguez-Díaz, J., A. Rubio-del-Campo, and M.J. Yebra. (2012). Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose. Appl. Environ. Microbiol. 78: 4613-4619. 22544237
Saier, M.H., Jr. (1989). Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53: 109-120. 2651862
Santiago, J.P., J.M. Ward, and T.D. Sharkey. (2020). SUT1.1 is a high affinity sucrose-proton co-transporter. Plant Direct 4: e00260. 32885136
Schulz, A., D. Beyhl, I. Marten, A. Wormit, E. Neuhaus, G. Poschet, M. Büttner, S. Schneider, N. Sauer, and R. Hedrich. (2011). Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 68: 129-136. 21668536
Shimokawa, N., J. Okada, K. Haglund, I. Dikic, N. Koibuchi, and M. Miura. (2002). Past-A, a novel proton-associated sugar transporter, regulates glucose homeostasis in the brain. J. Neurosci. 22: 9160-9165. 12417639
Stadler R., E. Truernit, M. Gahrtz, N. Sauer. (1999). The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J. 19: 269-278. 10476074
Sun, Y. and J.M. Ward. (2012). Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport. BMC Biochem 13: 26. 23170937
Tanaka, J., T. Leeb, J. Rushton, T.R. Famula, M. Mack, V. Jagannathan, C. Flury, I. Bachmann, J. Eberth, S.M. McDonnell, M.C.T. Penedo, and R.R. Bellone. (2019). Frameshift Variant in MFSD12 Explains the Mushroom Coat Color Dilution in Shetland Ponies. Genes (Basel) 10:. 31635058
Tóth, L., B. Fábos, K. Farkas, A. Sulák, K. Tripolszki, M. Széll, and N. Nagy. (2017). Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4. BMC Med Genet 18: 27. 28298193
Veenhoff, L.M., Heuberger, E.H.M.L., and B. Poolman. (2001). The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 20: 3056-3062. 11406582
Vitavska, O., R. Bartölke, K. Tabke, J.J. Heinisch, and H. Wieczorek. (2018). Interaction of mammalian and plant H/sucrose transporters with 14-3-3 proteins. Biochem. J. 475: 3239-3254. 30237153
Vu, T.M., A.N. Ishizu, J.C. Foo, X.R. Toh, F. Zhang, D.M. Whee, F. Torta, A. Cazenave-Gassiot, T. Matsumura, S. Kim, S.E.S. Toh, T. Suda, D.L. Silver, M.R. Wenk, and L.N. Nguyen. (2017). Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550: 524-528. 29045386
Wang, G., Y. Wu, L. Ma, Y. Lin, Y. Hu, M. Li, W. Li, Y. Ding, and L. Chen. (2021). Phloem loading in rice leaves depends strongly on the apoplastic pathway. J Exp Bot. [Epub: Ahead of Print] 33624763
Wang, L.Y., V.M. Ravi, G. Leblanc, E. Padrós, J. Cladera, and A. Perálvarez-Marín. (2016). Helical unwinding and side-chain unlocking unravel the outward open conformation of the melibiose transporter. Sci Rep 6: 33776. 27658476
Wei, C.Y., M.X. Zhu, N.H. Lu, R. Peng, X. Yang, P.F. Zhang, L. Wang, and J.Y. Gu. (2019). Bioinformatics-based analysis reveals elevated MFSD12 as a key promoter of cell proliferation and a potential therapeutic target in melanoma. Oncogene 38: 1876-1891. 30385854
Wijesena, H.R. and S.M. Schmutz. (2015). A Missense Mutation in SLC45A2 Is Associated with Albinism in Several Small Long Haired Dog Breeds. J Hered 106: 285-288. 25790827
Wiriyasermkul, P., S. Moriyama, and S. Nagamori. (2020). Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochim. Biophys. Acta. Biomembr 1862: 183318. 32333855
Xie, J., S. Ruan, Z. Zhu, M. Wang, Y. Cao, M. Ou, P. Yu, and J. Shi. (2021). Database mining analysis revealed the role of the putative H/sugar transporter solute carrier family 45 in skin cutaneous melanoma. Channels (Austin) 15: 496-506. 34334114
Yousef, M.S. and L. Guan. (2009). A 3D structure model of the melibiose permease of Escherichia coli represents a distinctive fold for Na+ symporters. Proc. Natl. Acad. Sci. USA 106: 15291-15296. 19706416
Zhang, C. and R. Turgeon. (2009). Downregulating the sucrose transporter VpSUT1 in Verbascum phoeniceum does not inhibit phloem loading. Proc. Natl. Acad. Sci. USA 106: 18849-18854. 19846784