TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.1.211.2
The retinal-specific ABC transporter (RIM protein, ABCR or ABCA4) (Stargardt's disease protein, involved in retinal/macular degeneration) in the rod outer segment (Garces et al. 2020). Changes in the oligomeric state of the nucleotide binding domains of ABCR are coupled to ATP hydrolysis and might represent a signal for the TMDs of ABCR to export the bound substrate (Biswas-Fiss 2006). The ABCA4 porter flips N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin, insuring that retinoids do not accumulate in disc membranes (Molday, 2007; Molday et al. 2009; Tsybovsky et al. 2013). It also transports several vitamin A derivatives (Sun, 2011) and phosphatidylethanolamine in the same direction. Mutations, known to cause Stargardt disease, decrease N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine transport activities (Quazi et al. 2012). It functions as an inwardly directed retinoid flippase in the visual cycle (Sakamoto et al. 2019). Three cryo-EM structures of human ABCA4, a retina-specific ABCA transporter, in distinct functional states have been solved at resolutions of 3.3-3.4 Å (Xie et al. 2021). In the nucleotide-free state, the two transmembrane domains (TMDs) exhibit a lateral-opening conformation, allowing the lateral entry of substrate from the lipid bilayer. The N-retinylidene-phosphatidylethanolamine (NRPE), the physiological lipid substrate of ABCA4, is sandwiched between the two TMDs in the luminal leaflet and is further stabilized by an extended loop from extracellular domain 1. In the ATP-bound state, the two TMDs display a closed conformation, which precludes substrate binding (Xie et al. 2021). ABCA4 flips N-retinylidene phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. Scortecci et al. 2021 determined the cryo-EM structure of ABCA4 in its substrate-free and bound states. The two structures are similar and delineate an elongated protein with the two TMSs forming an outward facing conformation, extended and twisted exocytoplasmic domains (ECD), and closely opposed nucleotide binding domains. N-Ret-PE is wedged between the two TMSs and a loop from ECD1 within the lumenal leaflet, consistent with a lateral access mechanism. It is stabilized through hydrophobic and ionic interactions with residues from the TMSs and ECDs (Scortecci et al. 2021). ABCA4 retinopathy-associated variants may be associated with retinal structure and subclinical disease (Simcoe et al. 2023). Stargardt disease-associated in-frame ABCA4 exon 17 skipping results in significant ABCA4 function (Kaltak et al. 2023). Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. The top most frequent causative gene was ABCA4 (37.2%) (Hitti-Malin et al. 2024). Hereditary retinal disease is often caused by defects in ABCA4 (Ozguc Caliskan et al. 2024). ABCA4-associated retinal degeneration is caused by disease-causing variants in ABCA4 (Chacon-Camacho et al. 2024). ABCA4 prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells (Scortecci et al. 2024).

Accession Number:P78363
Protein Name:RIM aka ABCR aka ABCA4
Length:2273
Molecular Weight:255944.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:15
Location1 / Topology2 / Orientation3: Membrane1 / Multi-pass membrane protein2
Substrate phosphatidylethanolamine, all-trans-retinal, retinoid

Cross database links:

RefSeq: NP_000341.2   
Entrez Gene ID: 24   
Pfam: PF00005   
OMIM: 153800  phenotype
248200  phenotype
601691  gene
601718  phenotype
604116  phenotype
KEGG: hsa:24   

Gene Ontology

GO:0005887 C:integral to plasma membrane
GO:0005624 C:membrane fraction
GO:0005524 F:ATP binding
GO:0042626 F:ATPase activity, coupled to transmembrane m...
GO:0007603 P:phototransduction, visible light

References (28)

[1] “A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy.”  Allikmets R.et.al.   9054934
[2] “The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR).”  Azarian S.M.et.al.   9202155
[3] “Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease.”  Gerber S.et.al.   9503029
[4] “Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt's disease.”  Nasonkin I.et.al.   9490294
[5] “Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease.”  Sun H.et.al.   10075733
[6] “Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR.”  Cremers F.P.M.et.al.   9466990
[7] “Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration.”  Allikmets R.et.al.   9295268
[8] “Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies.”  Rozet J.-M.et.al.   9781034
[9] “Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease.”  Lewis R.A.et.al.   9973280
[10] “The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the western European population and allows the classification of ABCR Mutations in patients with Stargardt disease.”  Maugeri A.et.al.   10090887
[11] “A novel mutation in the ABCR gene in four patients with autosomal recessive Stargardt disease.”  Zhang K.et.al.   10612508
[12] “Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene.”  Fishman G.A.et.al.   10206579
[13] “Further evidence for an association of ABCR alleles with age-related macular degeneration.”  Allikmets R.et.al.   10880298
[14] “A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration.”  Rivera A.et.al.   10958763
[15] “Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.”  Maugeri A.et.al.   10958761
[16] “Complex inheritance of ABCR mutations in Stargardt disease: linkage disequilibrium, complex alleles, and pseudodominance.”  Shroyer N.F.et.al.   10746567
[17] “An analysis of ABCR mutations in British patients with recessive retinal dystrophies.”  Papaioannou M.et.al.   10634594
[18] “New ABCR mutations and clinical phenotype in Italian patients with Stargardt disease.”  Simonelli F.et.al.   10711710
[19] “Biochemical defects in ABCR protein variants associated with human retinopathies.”  Sun H.et.al.   11017087
[20] “Different clinical expressions in two families with Stargardt's macular dystrophy (STGD1).”  Eksandh L.et.al.   11594993
[21] “Analysis of the ABCR (ABCA4) gene in 4-aminoquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease?”  Shroyer N.F.et.al.   11384574
[22] “Variation of codons 1961 and 2177 of the Stargardt disease gene is not associated with age-related macular degeneration.”  Guymer R.H.et.al.   11346402
[23] “Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).”  Yatsenko A.N.et.al.   11379881
[24] “Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies.”  Paloma E.et.al.   11385708
[25] “An analysis of allelic variation in the ABCA4 gene.”  Webster A.R.et.al.   11328725
[26] “Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.”  Briggs C.E.et.al.   11527935
[27] “Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8.”  Iida A.et.al.   12111378
[28] “The consensus coding sequences of human breast and colorectal cancers.”  Sjoeblom T.et.al.   16959974

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MGFVRQIQLL LWKNWTLRKR QKIRFVVELV WPLSLFLVLI WLRNANPLYS HHECHFPNKA 
61:	MPSAGMLPWL QGIFCNVNNP CFQSPTPGES PGIVSNYNNS ILARVYRDFQ ELLMNAPESQ 
121:	HLGRIWTELH ILSQFMDTLR THPERIAGRG IRIRDILKDE ETLTLFLIKN IGLSDSVVYL 
181:	LINSQVRPEQ FAHGVPDLAL KDIACSEALL ERFIIFSQRR GAKTVRYALC SLSQGTLQWI 
241:	EDTLYANVDF FKLFRVLPTL LDSRSQGINL RSWGGILSDM SPRIQEFIHR PSMQDLLWVT 
301:	RPLMQNGGPE TFTKLMGILS DLLCGYPEGG GSRVLSFNWY EDNNYKAFLG IDSTRKDPIY 
361:	SYDRRTTSFC NALIQSLESN PLTKIAWRAA KPLLMGKILY TPDSPAARRI LKNANSTFEE 
421:	LEHVRKLVKA WEEVGPQIWY FFDNSTQMNM IRDTLGNPTV KDFLNRQLGE EGITAEAILN 
481:	FLYKGPRESQ ADDMANFDWR DIFNITDRTL RLVNQYLECL VLDKFESYND ETQLTQRALS 
541:	LLEENMFWAG VVFPDMYPWT SSLPPHVKYK IRMDIDVVEK TNKIKDRYWD SGPRADPVED 
601:	FRYIWGGFAY LQDMVEQGIT RSQVQAEAPV GIYLQQMPYP CFVDDSFMII LNRCFPIFMV 
661:	LAWIYSVSMT VKSIVLEKEL RLKETLKNQG VSNAVIWCTW FLDSFSIMSM SIFLLTIFIM 
721:	HGRILHYSDP FILFLFLLAF STATIMLCFL LSTFFSKASL AAACSGVIYF TLYLPHILCF 
781:	AWQDRMTAEL KKAVSLLSPV AFGFGTEYLV RFEEQGLGLQ WSNIGNSPTE GDEFSFLLSM 
841:	QMMLLDAAVY GLLAWYLDQV FPGDYGTPLP WYFLLQESYW LGGEGCSTRE ERALEKTEPL 
901:	TEETEDPEHP EGIHDSFFER EHPGWVPGVC VKNLVKIFEP CGRPAVDRLN ITFYENQITA 
961:	FLGHNGAGKT TTLSILTGLL PPTSGTVLVG GRDIETSLDA VRQSLGMCPQ HNILFHHLTV 
1021:	AEHMLFYAQL KGKSQEEAQL EMEAMLEDTG LHHKRNEEAQ DLSGGMQRKL SVAIAFVGDA 
1081:	KVVILDEPTS GVDPYSRRSI WDLLLKYRSG RTIIMSTHHM DEADLLGDRI AIIAQGRLYC 
1141:	SGTPLFLKNC FGTGLYLTLV RKMKNIQSQR KGSEGTCSCS SKGFSTTCPA HVDDLTPEQV 
1201:	LDGDVNELMD VVLHHVPEAK LVECIGQELI FLLPNKNFKH RAYASLFREL EETLADLGLS 
1261:	SFGISDTPLE EIFLKVTEDS DSGPLFAGGA QQKRENVNPR HPCLGPREKA GQTPQDSNVC 
1321:	SPGAPAAHPE GQPPPEPECP GPQLNTGTQL VLQHVQALLV KRFQHTIRSH KDFLAQIVLP 
1381:	ATFVFLALML SIVIPPFGEY PALTLHPWIY GQQYTFFSMD EPGSEQFTVL ADVLLNKPGF 
1441:	GNRCLKEGWL PEYPCGNSTP WKTPSVSPNI TQLFQKQKWT QVNPSPSCRC STREKLTMLP 
1501:	ECPEGAGGLP PPQRTQRSTE ILQDLTDRNI SDFLVKTYPA LIRSSLKSKF WVNEQRYGGI 
1561:	SIGGKLPVVP ITGEALVGFL SDLGRIMNVS GGPITREASK EIPDFLKHLE TEDNIKVWFN 
1621:	NKGWHALVSF LNVAHNAILR ASLPKDRSPE EYGITVISQP LNLTKEQLSE ITVLTTSVDA 
1681:	VVAICVIFSM SFVPASFVLY LIQERVNKSK HLQFISGVSP TTYWVTNFLW DIMNYSVSAG 
1741:	LVVGIFIGFQ KKAYTSPENL PALVALLLLY GWAVIPMMYP ASFLFDVPST AYVALSCANL 
1801:	FIGINSSAIT FILELFENNR TLLRFNAVLR KLLIVFPHFC LGRGLIDLAL SQAVTDVYAR 
1861:	FGEEHSANPF HWDLIGKNLF AMVVEGVVYF LLTLLVQRHF FLSQWIAEPT KEPIVDEDDD 
1921:	VAEERQRIIT GGNKTDILRL HELTKIYPGT SSPAVDRLCV GVRPGECFGL LGVNGAGKTT 
1981:	TFKMLTGDTT VTSGDATVAG KSILTNISEV HQNMGYCPQF DAIDELLTGR EHLYLYARLR 
2041:	GVPAEEIEKV ANWSIKSLGL TVYADCLAGT YSGGNKRKLS TAIALIGCPP LVLLDEPTTG 
2101:	MDPQARRMLW NVIVSIIREG RAVVLTSHSM EECEALCTRL AIMVKGAFRC MGTIQHLKSK 
2161:	FGDGYIVTMK IKSPKDDLLP DLNPVEQFFQ GNFPGSVQRE RHYNMLQFQV SSSSLARIFQ 
2221:	LLLSHKDSLL IEEYSVTQTT LDQVFVNFAK QQTESHDLPL HPRAAGASRQ AQD