TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.3.2.5
The Golgi Ca2+, Mn2+-ATPase, human SPCA1 or SPCA1a (secretory-pathway Ca2+-ATPases (SPCAs)), ATP2C1 or Hussy-28 (efflux) (the Hailey-Hailey disease protein) is involved in responses to Golgi stress, apoptosis and mid-gestational death (Okunade et al., 2007). SPCA1 transports Mn2+ from the cytosol into the Golgi lumen. Increasing Golgi Mn2+ transport increased cell viability upon Mn2+ exposure, supporting a role in the management of Mn2+-induced neurotoxicity (Mukhopadhyay and Linstedt, 2011). SPCA1 governs the stability of TMEM165 (TC# 2.A.106.2.2) in Hailey-Hailey disease (Roy et al. 2020). Loss of ATP2C1 leads to impaired Notch1 signalling; ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded (Zonfrilli et al. 2023).  Six cryo-EM structures of hSPCA1 in a series of intermediate states have revealed its near-complete conformational cycle (Wu et al. 2023). With the aid of molecular dynamics simulations, these structures offer a clear structural basis for Ca2+ entry and release in hSPCA1. hSPCA1 undergoes unique conformational changes during ATP binding and phosphorylation compared to other well-studied P-type II ATPases. In addition, a conformational distortion of the Ca2+-binding site induced by the separation of transmembrane helices 4L and 6 unveiling a distinct Ca2+ release mechanism. A structure of the long-sought CaE2P state of P-type IIA ATPases provided insight into the Ca2+ transport cycle (Wu et al. 2023). Structures of human SPCA1a in the ATP and Ca2+/Mn2+-bound (E1-ATP) state and the metal-free phosphorylated (E2P) state at 3.1- to 3.3-Å resolutions (Chen et al. 2023). The structures revealed that Ca2+ and Mn2+ share the same metal ion-binding pocket with similar but notably different coordination geometries in the transmembrane domain, corresponding to the second Ca2+-binding site in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA).

Accession Number:P98194
Protein Name:hSPCA1 aka ATC1 aka ATP2C1 aka PMR1L aka KIAA1347
Length:919
Molecular Weight:100577.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:10
Location1 / Topology2 / Orientation3: Golgi apparatus membrane1 / Multi-pass membrane protein2
Substrate calcium(2+), manganese(2+)

Cross database links:

RefSeq: NP_001001485.1    NP_001001486.1    NP_001001487.1    NP_055197.2   
Entrez Gene ID: 27032   
Pfam: PF00689    PF00690    PF00122    PF00702   
OMIM: 169600  phenotype
604384  gene
KEGG: hsa:27032   

Gene Ontology

GO:0005794 C:Golgi apparatus
GO:0000139 C:Golgi membrane
GO:0016021 C:integral to membrane
GO:0005802 C:trans-Golgi network
GO:0005524 F:ATP binding
GO:0005509 F:calcium ion binding
GO:0005388 F:calcium-transporting ATPase activity
GO:0030145 F:manganese ion binding
GO:0015410 F:manganese-transporting ATPase activity
GO:0046872 F:metal ion binding
GO:0004871 F:signal transducer activity
GO:0031532 P:actin cytoskeleton reorganization
GO:0006754 P:ATP biosynthetic process
GO:0006816 P:calcium ion transport
GO:0016339 P:calcium-dependent cell-cell adhesion
GO:0006874 P:cellular calcium ion homeostasis
GO:0030026 P:cellular manganese ion homeostasis
GO:0008544 P:epidermis development
GO:0032468 P:Golgi calcium ion homeostasis
GO:0032472 P:Golgi calcium ion transport
GO:0006828 P:manganese ion transport
GO:0043123 P:positive regulation of I-kappaB kinase/NF-k...

References (9)

[1] “Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease.”  Hu Z.et.al.   10615129
[2] “Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump.”  Sudbrak R.et.al.   10767338
[3] “Effect of Hailey-Hailey Disease mutations on the function of a new variant of human secretory pathway Ca2+/Mn2+-ATPase (hSPCA1).”  Fairclough R.J.et.al.   12707275
[4] “Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.”  Nagase T.et.al.   10718198
[5] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[6] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[7] “Characterization of 16 novel human genes showing high similarity to yeast sequences.”  Stanchi F.et.al.   11124703
[8] “Hailey-Hailey disease: molecular and clinical characterization of novel mutations in the ATP2C1 gene.”  Dobson-Stone C.et.al.   11841554
[9] “Analysis of ATP2C1 gene mutation in 10 unrelated Japanese families with Hailey-Hailey disease.”  Yokota K.et.al.   11874499

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MKVARFQKIP NGENETMIPV LTSKKASELP VSEVASILQA DLQNGLNKCE VSHRRAFHGW 
61:	NEFDISEDEP LWKKYISQFK NPLIMLLLAS AVISVLMHQF DDAVSITVAI LIVVTVAFVQ 
121:	EYRSEKSLEE LSKLVPPECH CVREGKLEHT LARDLVPGDT VCLSVGDRVP ADLRLFEAVD 
181:	LSIDESSLTG ETTPCSKVTA PQPAATNGDL ASRSNIAFMG TLVRCGKAKG VVIGTGENSE 
241:	FGEVFKMMQA EEAPKTPLQK SMDLLGKQLS FYSFGIIGII MLVGWLLGKD ILEMFTISVS 
301:	LAVAAIPEGL PIVVTVTLAL GVMRMVKKRA IVKKLPIVET LGCCNVICSD KTGTLTKNEM 
361:	TVTHIFTSDG LHAEVTGVGY NQFGEVIVDG DVVHGFYNPA VSRIVEAGCV CNDAVIRNNT 
421:	LMGKPTEGAL IALAMKMGLD GLQQDYIRKA EYPFSSEQKW MAVKCVHRTQ QDRPEICFMK 
481:	GAYEQVIKYC TTYQSKGQTL TLTQQQRDVY QQEKARMGSA GLRVLALASG PELGQLTFLG 
541:	LVGIIDPPRT GVKEAVTTLI ASGVSIKMIT GDSQETAVAI ASRLGLYSKT SQSVSGEEID 
601:	AMDVQQLSQI VPKVAVFYRA SPRHKMKIIK SLQKNGSVVA MTGDGVNDAV ALKAADIGVA 
661:	MGQTGTDVCK EAADMILVDD DFQTIMSAIE EGKGIYNNIK NFVRFQLSTS IAALTLISLA 
721:	TLMNFPNPLN AMQILWINII MDGPPAQSLG VEPVDKDVIR KPPRNWKDSI LTKNLILKIL 
781:	VSSIIIVCGT LFVFWRELRD NVITPRDTTM TFTCFVFFDM FNALSSRSQT KSVFEIGLCS 
841:	NRMFCYAVLG SIMGQLLVIY FPPLQKVFQT ESLSILDLLF LLGLTSSVCI VAEIIKKVER 
901:	SREKIQKHVS STSSSFLEV