TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


4.A.1.1.1
Glucose porter (PtsG; GlcA; Umg) (transports D-glucose and α-methyl-D-glucopyranoside).  The IIC domain has been crystallized, and x-ray data to 4.5 Å resolution have been described (Zurbriggen et al. 2010).  A higher resolution structure appeared later (Ren et al. 2018).  The system has been manipulated to engineer increased production of aromatic metabolites (Carmona et al. 2015, Vargas-Tah et al. 2015). The presence or absence of D-glucose reflects the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1 (Kalbermatter et al. 2017).  Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I, HPr, EIIBCGlc and EIIABCDMan in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBCGlc sequesters Mlc to the cell membrane, preventing its interaction with DNA (Plumbridge 2002, Joyet et al. 2013). The Vibrio Mlc functions similarly (Pickering et al. 2014). A small (43 aa) protein, SgrT, acts in tandem with a well-characterized small RNA during metabolic stress, due to the accumulation of cytoplasmic sugar-Ps to help bacterial cells maintain balanced metabolism and continue growing. SgrT acts on the glucose transport system, inhibiting its activity under stress conditions in order to allow cells to utilize alternative carbon sources (Lloyd et al. 2017). ptsG mRNA localization to the inner membrane, coupled with the membrane insertion of nascent peptide, mediates Hfq/SgrS-dependent ptsG mRNA destabilization, presumably by reducing second rounds of translation (Kawamoto et al. 2005). SgrT is a small protein of 43 aas that allosterically inhibits IICBGlc. while SgrS is a small RNA coompementary to ptsG mRNA that influences its expression.  The sgrST operon is regulated by SgrR, a glucose-6-P-dependent transcriptional activator (Jeckelmann and Erni 2020).  

Accession Number:P69786
Protein Name:PTS system glucose-specific EIICB component PTGB aka PTSG aka GLCA aka UMG aka B1101
Length:477
Molecular Weight:50677.00
Species:Escherichia coli [83333]
Number of TMSs:10
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate D-glucopyranose

Cross database links:

DIP: DIP-29833N
RefSeq: AP_001727.1    NP_415619.1   
Entrez Gene ID: 945651   
Pfam: PF00367    PF02378   
BioCyc: EcoCyc:PTSG-MONOMER    ECOL168927:B1101-MONOMER   
KEGG: ecj:JW1087    eco:b1101   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0005355 F:glucose transmembrane transporter activity
GO:0016301 F:kinase activity
GO:0005515 F:protein binding
GO:0008982 F:protein-N(PI)-phosphohistidine-sugar phosph...
GO:0005351 F:sugar:hydrogen symporter activity
GO:0015758 P:glucose transport
GO:0009401 P:phosphoenolpyruvate-dependent sugar phospho...

References (11)

[1] “Glucose permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc.”  Erni B.et.al.   3023349
[2] “A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map.”  Oshima T.et.al.   8905232
[3] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[4] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[5] “Cysteine phosphorylation of the glucose transporter of Escherichia coli.”  Meins M.et.al.   8505292
[6] “Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system.”  Vanderpool C.K.et.al.   15522088
[7] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
[8] “Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction.”  Morita T.et.al.   16549791
[9] “The glucose transporter of Escherichia coli. Assignment of the 1H, 13C and 15N resonances and identification of the secondary structure of the soluble IIB domain.”  Golic Grdadolnik S.et.al.   8112346
[10] “Solution structure of the IIB domain of the glucose transporter of Escherichia coli.”  Eberstadt M.et.al.   8784182
[11] “Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIB(Glc) domain and its binding interface with the IIA(Glc) subunit.”  Gemmecker G.et.al.   9200688
Structure:
1IBA   1O2F   3BP3   3BP8     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MFKNAFANLQ KVGKSLMLPV SVLPIAGILL GVGSANFSWL PAVVSHVMAE AGGSVFANMP 
61:	LIFAIGVALG FTNNDGVSAL AAVVAYGIMV KTMAVVAPLV LHLPAEEIAS KHLADTGVLG 
121:	GIISGAIAAY MFNRFYRIKL PEYLGFFAGK RFVPIISGLA AIFTGVVLSF IWPPIGSAIQ 
181:	TFSQWAAYQN PVVAFGIYGF IERCLVPFGL HHIWNVPFQM QIGEYTNAAG QVFHGDIPRY 
241:	MAGDPTAGKL SGGFLFKMYG LPAAAIAIWH SAKPENRAKV GGIMISAALT SFLTGITEPI 
301:	EFSFMFVAPI LYIIHAILAG LAFPICILLG MRDGTSFSHG LIDFIVLSGN SSKLWLFPIV 
361:	GIGYAIVYYT IFRVLIKALD LKTPGREDAT EDAKATGTSE MAPALVAAFG GKENITNLDA 
421:	CITRLRVSVA DVSKVDQAGL KKLGAAGVVV AGSGVQAIFG TKSDNLKTEM DEYIRNH