TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


4.A.1.2.2
β-Glucoside (salicin, arbutin, cellobiose, etc) group translocator, BglF.  The bgl operon, encoding BglF, is regulated by antitermination when the RNA antiterminator protein, BglG, binds to one or both RAT sites in the mRNA (Gordon et al. 2015).

Accession Number:P08722
Protein Name:IIBCA aka PTSB aka BGLF aka BGLC aka BGLS aka B3722
Length:625
Molecular Weight:66483.00
Species:Escherichia coli [83333]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate salicin, beta-glucoside, hydroquinone O-beta-D-glucopyranoside, cellobiose

Cross database links:

DIP: DIP-9215N
RefSeq: AP_004065.1    NP_418178.1   
Entrez Gene ID: 948236   
Pfam: PF00358    PF00367    PF02378   
BioCyc: EcoCyc:BGLF-MONOMER    ECOL168927:B3722-MONOMER   
KEGG: ecj:JW3700    eco:b3722   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0016301 F:kinase activity
GO:0008982 F:protein-N(PI)-phosphohistidine-sugar phosph...
GO:0005351 F:sugar:hydrogen symporter activity
GO:0009401 P:phosphoenolpyruvate-dependent sugar phospho...

References (6)

[1] “Nucleotide sequence of bglC, the gene specifying enzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product.”  Bramley H.F.et.al.   3309161
[2] “Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes.”  Schnetz K.et.al.   3034860
[3] “DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication.”  Burland V.D.et.al.   7686882
[4] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[5] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[6] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MTELARKIVA GVGGADNIVS LMHCATRLRF KLKDESKAQA EVLKKTPGII MVVESGGQFQ 
61:	VVIGNHVADV FLAVNSVAGL DEKAQQAPEN DDKGNLLNRF VYVISGIFTP LIGLMAATGI 
121:	LKGMLALALT FQWTTEQSGT YLILFSASDA LFWFFPIILG YTAGKRFGGN PFTAMVIGGA 
181:	LVHPLILTAF ENGQKADALG LDFLGIPVTL LNYSSSVIPI IFSAWLCSIL ERRLNAWLPS 
241:	AIKNFFTPLL CLMVITPVTF LLVGPLSTWI SELIAAGYLW LYQAVPAFAG AVMGGFWQIF 
301:	VMFGLHWGLV PLCINNFTVL GYDTMIPLLM PAIMAQVGAA LGVFLCERDA QKKVVAGSAA 
361:	LTSLFGITEP AVYGVNLPRK YPFVIACISG ALGATIIGYA QTKVYSFGLP SIFTFMQTIP 
421:	STGIDFTVWA SVIGGVIAIG CAFVGTVMLH FITAKRQPAQ GAPQEKTPEV ITPPEQGGIC 
481:	SPMTGEIVPL IHVADTTFAS GLLGKGIAIL PSVGEVRSPV AGRIASLFAT LHAIGIESDD 
541:	GVEILIHVGI DTVKLDGKFF SAHVNVGDKV NTGDRLISFD IPAIREAGFD LTTPVLISNS 
601:	DDFTDVLPHG TAQISAGEPL LSIIR