TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


5.A.1.1.1
Disulfide bond oxidoreductase-D, DsbD. of 565 aas and 9 TMSs.  DsbD provides reducing equivalents to a large array of periplasmic redox proteins. These proteins use the reducing power received from DsbD to correct non-native disulfides, mature c-type cytochromes, protect cysteines on secreted proteins from irreversible oxidation, reduce methionine sulfoxides, and scavenge reactive oxygen species such as hydrogen peroxide (Cho and Collet 2013). DsbD x-ray structures are known, revealing its unusual redox properties and extreme rigidity (Stirnimann et al. 2006). DsbD contains two periplasmically oriented domains at the N- and C-termini (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle. The crystal structure of this catalytic intermediate at 2.85 Å resolution revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD (Rozhkova et al. 2004).

Accession Number:P36655
Protein Name:DsdB aka DIPZ aka CYCZ aka CUTA2 aka B4136
Length:565
Molecular Weight:61795.00
Species:Escherichia coli [83333]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate electron

Cross database links:

DIP: DIP-9476N
RefSeq: AP_004637.1    NP_418559.1   
Entrez Gene ID: 948649   
Pfam: PF02683    PF00085   
BioCyc: EcoCyc:DSBD-MONOMER    ECOL168927:B4136-MONOMER   
KEGG: ecj:JW5734    eco:b4136   

Gene Ontology

GO:0005887 C:integral to plasma membrane
GO:0009055 F:electron carrier activity
GO:0047134 F:protein-disulfide reductase activity
GO:0045454 P:cell redox homeostasis
GO:0017004 P:cytochrome complex assembly
GO:0022900 P:electron transport chain
GO:0006810 P:transport

References (13)

[1] “Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli.”  Missiakas D.et.al.   7628442
[2] “Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12.”  Fong S.-T.et.al.   7623666
[3] “The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain.”  Crooke H.R.et.al.   7623667
[4] “Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes.”  Burland V.D.et.al.   7610040
[5] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[6] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[7] “Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute differentially to function.”  Gordon E.H.J.et.al.   10760137
[8] “Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm.”  Chung J.et.al.   10712691
[9] “Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein.”  Sambongi Y.et.al.   7957865
[10] “Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli.”  Stewart E.J.et.al.   10545108
[11] “Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade.”  Katzen F.et.al.   11114333
[12] “DsbD-catalyzed transport of electrons across the membrane of Escherichia coli.”  Krupp R.et.al.   11085993
[13] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
Structure:
1JPE   1JZD   1L6P   1VRS   1Z5Y   2FWE   2FWF   2FWG   2FWH   3PFU   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAQRIFTLIL LLCSTSVFAG LFDAPGRSQF VPADQAFAFD FQQNQHDLNL TWQIKDGYYL 
61:	YRKQIRITPE HAKIADVQLP QGVWHEDEFY GKSEIYRDRL TLPVTINQAS AGATLTVTYQ 
121:	GCADAGFCYP PETKTVPLSE VVANNAAPQP VSVPQQEQPT AQLPFSALWA LLIGIGIAFT 
181:	PCVLPMYPLI SGIVLGGKQR LSTARALLLT FIYVQGMALT YTALGLVVAA AGLQFQAALQ 
241:	HPYVLIGLAI VFTLLAMSMF GLFTLQLPSS LQTRLTLMSN RQQGGSPGGV FVMGAIAGLI 
301:	CSPCTTAPLS AILLYIAQSG NMWLGGGTLY LYALGMGLPL MLITVFGNRL LPKSGPWMEQ 
361:	VKTAFGFVIL ALPVFLLERV IGDVWGLRLW SALGVAFFGW AFITSLQAKR GWMRIVQIIL 
421:	LAAALVSVRP LQDWAFGATH TAQTQTHLNF TQIKTVDELN QALVEAKGKP VMLDLYADWC 
481:	VACKEFEKYT FSDPQVQKAL ADTVLLQANV TANDAQDVAL LKHLNVLGLP TILFFDGQGQ 
541:	EHPQARVTGF MDAETFSAHL RDRQP