TCDB is operated by the Saier Lab Bioinformatics Group

The dipeptidyl aminopeptidase-like protein 6, β-subunit, Dpp6, DPPX-S or DPLP (865 aas) of the Kv4.2 K+ channel (TC# 1.A.1.2.5; Dougherty et al. 2009). DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement (Dougherty and Covarrubias 2006). It is an auxiliary subunit of A-type voltage-gated K+ channels, and this single transmembrane protein impacts neuronal and synaptic development (Lin et al. 2020).

  Dpp6 of Homo sapiens

The inactive dipeptidyl peptidase or prolyl oligopeptidase, DPP10 (DPPY, DPRP-3, DPL2, DPPIV  or DPR3) is of 798 aas with 1 N-terminal TMS. It preferentially binds to Kv4 channel proteins to increase current density and alter channel gating (Ren et al. 2005; Zagha et al. 2005). DPP10 also forms complexes with itself and with DPPX in the absence of Kv4 channels. DPP10 mRNA is abundantly expressed in nodose and dorsal root ganglia, suggesting that DPP10 participates in controlling airway reactivity and mechanosensation. The region from the N-terminus to the end of the TMS mediates its association with the channel, whereas the S1-S2 portion of the channel is sufficient for complex formation. This N-terminal portion of DPP10 also confers all the gating effects produced by the peptidase homologue (Ren et al. 2005). DPP10 has an N-terminal DPPIV_N domain and a C-terminal abhydrolase domain. It is an inactivating modulator of Kv4 channels and the Kv1.4 channel (Kuo et al. 2017). DPP10 and KChIP2b (Q9NS61; TC# 8.a.82.2.4) both modulate Kv4.3 inactivation, but their primary effects are on different inactivation states (Kuo et al. 2017).

DPP10 of Homo sapiens

Dipeptide peptidase, DPP8 of 1452 aas and possibly 3 or 4 TMSs.

DPP8 of Trichinella patagoniensis

Peptidase S9B dipeptidylpeptidase IV domain protein of 691 aas

Peptidase S9B of Rhodopirellula sp. SWK7

Dipeptide peptidase 4, DPP4, of 766 aas and 1 or 2 TMSs, one at the N-terminus, and possibly a second near the C-terminus. It has been consdered to be a potential drug target for combating SARS CoV2 (Raghav et al. 2021). There is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker, linagliptin, are used (Xiong et al. 2022).

DPP4 of Homo sapiens