1.B.3 The Sugar Porin (SP) Family

The SP family includes the well characterized maltoporin of E. coli for which the three-dimensional structures with and without its substrate have been obtained by X-ray diffraction. The protein consists of an 18 β-stranded β-barrel in contrast to proteins of the general bacterial porin family (GBP) and the Rhodobacter PorCa Porin (RPP) family which consist of 16 β-stranded &beta-barrels. Although maltoporin contains a wider beta-barrel than the porins of the GBP and RPP families (TC#s 1.B.1 and 1.B.7), it exhibits a narrower channel, showing only 5% of the ionic conductance of the latter porins.



This family belongs to the Outer Membrane Pore-forming Protein I (OMPP-I) Superfamily .

 

References:

Andersen, C., B. Rak, and R. Benz. (1999). The gene bglH present in the bgl operon of Escherichia coli, responsible for uptake and fermentation of β-glucosides encodes for a carbohydrate-specific outer membrane porin. Mol. Microbiol. 31: 499-510.

Anderson, D.M., K.M. Anderson, C.L. Chang, C.A. Makarewich, B.R. Nelson, J.R. McAnally, P. Kasaragod, J.M. Shelton, J. Liou, R. Bassel-Duby, and E.N. Olson. (2015). A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160: 595-606.

Dutzler, R., Y.F. Wang, P.J. Rizkallah, J.P. Rosenbusch and T. Schirmer (1996). Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4: 127-134.

Gerken, H., D. Shetty, B. Kern, L.J. Kenney, and R. Misra. (2024). Effects of pleiotropic and alleles of on envelope stress and antibiotic sensitivity. J. Bacteriol. 206: e0017224.

Hardesty, C., C. Ferran and J.M. DiRenzo (1991). Plasmid-mediated sucrose metabolism in Escherichia coli: characterization of scrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J. Bacteriol. 173: 449-456.

Jeanteur, D., J.H. Lakey and F. Pattus (1991). The bacterial porin superfamily: sequence alignment and structure prediction. Mol. Microbiol. 5: 2153-2164.

Jeanteur, D., J.H. Lakey and F. Pattus (1994). The porin superfamily: diversity and common features. In: Bacterial Cell Wall. Edited by Ghuysen, J.M., Hakenbeck, R. Elsevier, Amsterdam, pp. 363-380.

Kim, B.H., C. Andersen, J. Kreth, C. Ulmke, K. Schmid, and R. Benz. (2002). Site-directed mutagenesis within the central constriction site of ScrY (sucroseporin): effect on ion transport and comparison of maltooligosaccharide binding to LamB of Escherichia coli. J. Membr. Biol. 187: 239-253.

Lin, X.M., M.J. Yang, H. Li, C. Wang, and X.X. Peng. (2014). Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. J Proteomics 98: 244-253.

Löwe, H., P. Sinner, A. Kremling, and K. Pflüger-Grau. (2018). Engineering sucrose metabolism in Pseudomonas putida highlights the importance of porins. Microb Biotechnol. [Epub: Ahead of Print]

Meyer, J.E.W., M. Hofnung and G.E. Schulz (1997). Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J. Mol. Biol. 266: 761-775.

Mulvihill, E., M. Pfreundschuh, J. Thoma, N. Ritzmann, and D.J. Müller. (2019). High-Resolution Imaging of Maltoporin LamB while Quantifying the Free-Energy Landscape and Asymmetry of Sugar Binding. Nano Lett. [Epub: Ahead of Print]

Nelson, B.R., C.A. Makarewich, D.M. Anderson, B.R. Winders, C.D. Troupes, F. Wu, A.L. Reese, J.R. McAnally, X. Chen, E.T. Kavalali, S.C. Cannon, S.R. Houser, R. Bassel-Duby, and E.N. Olson. (2016). Muscle physiology. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351: 271-275.

Nikaido, H. (1992). Porins and specific channels of bacterial outer membranes. Mol. Microbiol. 6: 435-442.

Schirmer, T., T.A. Keller, Y.F. Wang and J.P. Rosenbusch (1995). Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267: 512-514.

Schulz, G.E. (1996). Porins: general to specific, native to engineered passive pores. Curr. Opin. Struc. Biol. 6: 485-490.

Sun, L., F. Bertelshofer, G. Greiner, and R.A. Böckmann. (2016). Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations. Front Bioeng Biotechnol 4: 9.

Wang, Y.F., R. Dutzler, P.J. Rizkallah, J.P. Rosenbusch and T. Schirmer (1997). Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. J. Mol. Biol. 272: 56-63.

Examples:

TC#NameOrganismal TypeExample
1.B.3.1.1

LamB (MalL) maltoporin (maltose–maltoheptose).  Also catalyzes the uptake of antibiotics (Lin et al. 2014).  LamB preferentially binds maltodextrins from the periplasmic side, and thus, sugar binding and uptake are asymmetric (Mulvihill et al. 2019). Expression of the lamB gene is regulated by EnvZ and OmpR in response to osmolarity and thereby influences antibiotic resistance (Gerken et al. 2024).

Bacteria

LamB of E. coli

 
1.B.3.1.10

Uncharacterized protein

Nitrospira

Putative porin of Candidatus Nitrospira defluvii

 
1.B.3.1.11

Putative porin of 385 aas

Planctomycetes

Porin of Planctomycete KSU-1

 
1.B.3.1.12

Putative porin of 447 aas

Verrucomicrobia

PP of Pedosphaera parvula

 
1.B.3.1.13

sucrose porin, ScrY, of 521 aas (Löwe et al. 2018).

ScrY of Pseudomonas putida

 
1.B.3.1.14

Maltoporin, LamB; MalL, of 439 aas and 1 -terminal TMS.

LamB of Aeromonas veronii

 
1.B.3.1.2

Oligosaccharide porin, ScrY (transports sucrose, raffinose and maltooligo-saccharides) (Kim et al. 2002).  The 3-d structure known (PDB ID 1A0S).  Sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Three asparate residues are key residues, opposing the passage of sucrose, all located within the L3 loop (Sun et al. 2016).

Bacteria

ScrY of Salmonella typhimurium

 
1.B.3.1.3

Porin with specificity for β-glucosides, BglH of 538 aas.  High affinity binding was observed with the aromatic beta-D-glucosides arbutin and salicin as well as with gentibiose and cellobiose. Binding of maltooligosaccharides to BglH was much weaker, indicating that the binding site of BglH for carbohydrates is different from that of LamB (maltoporin) (Andersen et al. 1999).

Bacteria

BglH (YieC) of E. coli

 
1.B.3.1.4Maltoporin

Gram-negative bacteria

LamB of Alteromonas sp.

 
1.B.3.1.5

Outer membrane porin homologue

γ-Proteobacteria

Omp of Glaciecola mesophila (K6YXR7)

 
1.B.3.1.6

Putative outer membrane porin

γ-Proteobacteria

Omp of Rheinheimera nanhaiensis (I1DXN7)

 
1.B.3.1.7

Putative outer membrane porin

Aquifacae

OMP of Aquifex aeolicus (O67300)

 
1.B.3.1.8

Putative porin

Proteobacteria

Porin of Chromohalobacter salexigens

 
1.B.3.1.9

Putative porin

Verrucomicrobia

Porin of Verrucomicrobiae bacterium

 
Examples:

TC#NameOrganismal TypeExample
1.B.3.2.1

Putative porin of 411 aas

Verrucomicrobia

PP of Opitutus terrae

 
1.B.3.2.2

Putative porin of 397 aas

Proteobacteria

PP of Thioflavicoccus mobilis

 
1.B.3.2.3

Putative porin of 401 aas

Proteobacteria

PP of Marinobacter aquaeolei (Marinobacter hydrocarbonoclasticus)

 
1.B.3.2.4

Uncharacterized protein of 355 aas and 1 N-terminal TMS.

UP of Vibrio celticus

 
Examples:

TC#NameOrganismal TypeExample
1.B.3.3.1

Uncharacterized putative porin of 448 aas

UP of Bdellovibrio bacteriovorus