1.C.73 The Pseudomonas Exotoxin A (P-ExoA) Family Exposure to low endosomal pH during internalization of Pseudomonas exotoxin A (PE) triggers membrane insertion of its translocation domain. This process is a prerequisite for PE translocation to the cytosol where it inactivates protein synthesis. Although hydrophobic helices enable membrane insertion of related bacterial toxins such as diphtheria toxin, the PE translocation domain is devoid of hydrophobic stretches. The structural features triggering acid-induced membrane insertion of PE have recently been elucidated (Méré et al., 2005). At neutral pH, a Trp is buried in a hydrophobic pocket, closed by the smallest α-helix of the translocation domain. Upon acidification, protonation of the Asp that is the N-cap residue of the helix leads to its destabilization, enabling Trp side chain insertion into the endosome membrane (Méré et al., 2005). This tryptophan-based membrane insertion system is similar to the membrane-anchoring mechanism of human annexin-V. P-ExoA is 613 aas long and consists of 3 structural/functional domains. Domain I binds to the α2-macroglobulin/low density lipoprotein receptor-related protein, enabling internalization via receptor-mediated endocytosis. Domain II then mediates translocation into the cytosol of the entire toxin or of a carboxyl-terminal fragment generated by furin proteolysis and encompassing domain III and most of domain II. Finally, domain III catalyzes the ADP ribosylation of elongation factor 2, thereby inhibiting protein synthesis and killing the cell. P-ExoA has only one homologue in the current (7/05) NCBI database, a hypothetical exotoxin A from Vibrio cholerae. It is 666 aas long and exhibits 33% identity with P-ExoA throughout almost all of its length. A C-terminal domain (residues 436-502) shows significant sequence similarity (27% identity) with a region (42-167) of diphtheria toxin from C. diphtheriae (TC #1.C.7.1.1) as well as a region (116-239) with 22% identity with a region (314-420) of a putative exported protein from Yersinia species such as Y. pestis (806 aas; AAS62938).
References:
Pore-forming exotoxin A (chain A; ExlA) (Rasper and Merrill 1994; Méré et al., 2005). Pore-formation has been demonstrated (Zalman and Wisnieski 1985). Secretion depends on ExlB, a Two Partner Secretion (TPS; TC# 1.B.20) system, as well as type IV pili. The protein has three domains: an N-terminal hemolyin domain, a central RGD motif domain, and a C-terminal domain required for cell lysis. Pore-formation precedes lysis (Basso et al. 2017). ExlA triggers cadherin cleavage by promoting calcium influx which activates ADAM10 for proteolysis (Reboud et al. 2017). ExlA possesses pore-forming activity and is cytolytic for most human cell types. It belongs to a class of poorly characterized bacterial toxins, sharing a similar protein domain organization and a common secretion pathway (Huber 2022).
Proteobacteria
Exotoxin A (ExlA) of Pseudomonas aeruginosa (P11439)
The cholix toxin. The NAD-dependent ADP-ribosyltransferase (ADPRT) catalyzes transfer of the ADP-ribosyl moiety of oxidized NAD onto eukaryotic elongation factor 2 (eEF-2), thus arresting protein synthesis. It may use the eukaryotic pro-low-density lipoprotein receptor-related protein 1 (LRP1) to enter mouse cells, Cholix toxin shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin (Lugo and Merrill 2015).
Proteobacteria
Cholix toxin of Vibrio cholera
Exotoxin A of 241 aas
Proteobacteria
Exotoxin A of Cystobacter fuscus
Uncharacterzed protein of 679 aas
Proteobacteria
UP of Yersinia frederiksenii
Exotoxin of 806 aas
Proteobacteria
Exotoxin of Yersinia similis
Uncharacterized protein of 698 aas
Actinobacteria
UP of Mycobacterium gastri
Uncharacterized toxin of 736 aas.
Toxin of Chloracidobacterium thermophilum
Putative toxin of 937 aa
Toxin of Blastopirellula marina
Toxin of Blastopirellula marina
Putative toxin of 679 aas
Toxin of Gloeocapsa sp. PCC 7428