TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P14907
Protein Name:Nucleoporin NSP1
Length:823
Molecular Weight:86516.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Cytoplasmic side3
Substrate

Cross database links:

DIP: DIP-1484N DIP-1484N DIP-1484N DIP-1484N
RefSeq: NP_012494.1   
Entrez Gene ID: 853409   
Pfam: PF05064   
KEGG: sce:YJL041W    sce:YJL041W    sce:YJL041W    sce:YJL041W   

Gene Ontology

GO:0055125 C:Nic96 complex
GO:0031965 C:nuclear membrane
GO:0055126 C:Nup82 complex
GO:0005515 F:protein binding
GO:0017056 F:structural constituent of nuclear pore
GO:0007049 P:cell cycle
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0000055 P:ribosomal large subunit export from nucleus
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0005543 F:phospholipid binding
GO:0016973 P:poly(A)+ mRNA export from nucleus
GO:0006606 P:protein import into nucleus
GO:0000056 P:ribosomal small subunit export from nucleus
GO:0097064 P:ncRNA export from nucleus

References (88)

[1] “A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae.”  Hurt E.C.et.al.   3072197
[2] “Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.”  Galibert F.et.al.   8641269
[3] “NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain.”  Nehrbass U.et.al.   2112428
[4] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[5] “Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA.”  Hellmuth K.et.al.   9774653
[6] “The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p.”  Stochaj U.et.al.   9461539
[7] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[8] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[9] “The mechanism of ran import into the nucleus by nuclear transport factor 2.”  Quimby B.B.et.al.   10889207
[10] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[11] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[12] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[13] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[14] “Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export.”  Grosshans H.et.al.   11352936
[15] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[16] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[17] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[18] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[19] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[20] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[21] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[22] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[23] “A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae.”  Hurt E.C.et.al.   3072197
[24] “Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.”  Galibert F.et.al.   8641269
[25] “NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain.”  Nehrbass U.et.al.   2112428
[26] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[27] “Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA.”  Hellmuth K.et.al.   9774653
[28] “The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p.”  Stochaj U.et.al.   9461539
[29] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[30] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[31] “The mechanism of ran import into the nucleus by nuclear transport factor 2.”  Quimby B.B.et.al.   10889207
[32] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[33] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[34] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[35] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[36] “Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export.”  Grosshans H.et.al.   11352936
[37] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[38] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[39] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[40] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[41] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[42] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[43] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[44] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[45] “A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae.”  Hurt E.C.et.al.   3072197
[46] “Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.”  Galibert F.et.al.   8641269
[47] “NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain.”  Nehrbass U.et.al.   2112428
[48] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[49] “Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA.”  Hellmuth K.et.al.   9774653
[50] “The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p.”  Stochaj U.et.al.   9461539
[51] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[52] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[53] “The mechanism of ran import into the nucleus by nuclear transport factor 2.”  Quimby B.B.et.al.   10889207
[54] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[55] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[56] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[57] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[58] “Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export.”  Grosshans H.et.al.   11352936
[59] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[60] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[61] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[62] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[63] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[64] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[65] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[66] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[67] “A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae.”  Hurt E.C.et.al.   3072197
[68] “Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.”  Galibert F.et.al.   8641269
[69] “NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain.”  Nehrbass U.et.al.   2112428
[70] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[71] “Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA.”  Hellmuth K.et.al.   9774653
[72] “The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p.”  Stochaj U.et.al.   9461539
[73] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[74] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[75] “The mechanism of ran import into the nucleus by nuclear transport factor 2.”  Quimby B.B.et.al.   10889207
[76] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[77] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[78] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[79] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[80] “Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export.”  Grosshans H.et.al.   11352936
[81] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[82] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[83] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[84] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[85] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[86] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[87] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[88] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
Structure:
1O6O     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MNFNTPQQNK TPFSFGTANN NSNTTNQNSS TGAGAFGTGQ STFGFNNSAP NNTNNANSSI 
61:	TPAFGSNNTG NTAFGNSNPT SNVFGSNNST TNTFGSNSAG TSLFGSSSAQ QTKSNGTAGG 
121:	NTFGSSSLFN NSTNSNTTKP AFGGLNFGGG NNTTPSSTGN ANTSNNLFGA TANANKPAFS 
181:	FGATTNDDKK TEPDKPAFSF NSSVGNKTDA QAPTTGFSFG SQLGGNKTVN EAAKPSLSFG 
241:	SGSAGANPAG ASQPEPTTNE PAKPALSFGT ATSDNKTTNT TPSFSFGAKS DENKAGATSK 
301:	PAFSFGAKPE EKKDDNSSKP AFSFGAKSNE DKQDGTAKPA FSFGAKPAEK NNNETSKPAF 
361:	SFGAKSDEKK DGDASKPAFS FGAKPDENKA SATSKPAFSF GAKPEEKKDD NSSKPAFSFG 
421:	AKSNEDKQDG TAKPAFSFGA KPAEKNNNET SKPAFSFGAK SDEKKDGDAS KPAFSFGAKS 
481:	DEKKDSDSSK PAFSFGTKSN EKKDSGSSKP AFSFGAKPDE KKNDEVSKPA FSFGAKANEK 
541:	KESDESKSAF SFGSKPTGKE EGDGAKAAIS FGAKPEEQKS SDTSKPAFTF GAQKDNEKKT 
601:	EESSTGKSTA DVKSSDSLKL NSKPVELKPV SLDNKTLDDL VTKWTNQLTE SASHFEQYTK 
661:	KINSWDQVLV KGGEQISQLY SDAVMAEHSQ NKIDQSLQYI ERQQDELENF LDNFETKTEA 
721:	LLSDVVSTSS GAAANNNDQK RQQAYKTAQT LDENLNSLSS NLSSLIVEIN NVSNTFNKTT 
781:	NIDINNEDEN IQLIKILNSH FDALRSLDDN STSLEKQINS IKK