TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P20676
Protein Name:Nucleoporin NUP1
Length:1076
Molecular Weight:113581.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Nucleoplasmic side3
Substrate

Cross database links:

DIP: DIP-81N DIP-81N DIP-81N DIP-81N
RefSeq: NP_014741.1   
Entrez Gene ID: 854265   
Pfam: PF10599   
KEGG: sce:YOR098C    sce:YOR098C    sce:YOR098C    sce:YOR098C   

Gene Ontology

GO:0031965 C:nuclear membrane
GO:0005643 C:nuclear pore
GO:0005515 F:protein binding
GO:0005198 F:structural molecule activity
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006998 P:nuclear envelope organization
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0016973 P:poly(A)+ mRNA export from nucleus
GO:0000055 P:ribosomal large subunit export from nucleus
GO:0000972 P:transcription-dependent tethering of RNA polymerase II gene DNA at nuclear periphery

References (79)

[1] “The NUP1 gene encodes an essential component of the yeast nuclear pore complex.”  Davis L.I.et.al.   2190694
[2] “DNA sequencing and analysis of 130 kb from yeast chromosome XV.”  Voss H.et.al.   9200815
[3] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XV.”  Dujon B.et.al.   9169874
[4] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[5] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[6] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[7] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[8] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[9] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[10] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[11] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[12] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[13] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[14] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[15] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[16] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[17] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[18] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[19] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[20] “The NUP1 gene encodes an essential component of the yeast nuclear pore complex.”  Davis L.I.et.al.   2190694
[21] “DNA sequencing and analysis of 130 kb from yeast chromosome XV.”  Voss H.et.al.   9200815
[22] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XV.”  Dujon B.et.al.   9169874
[23] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[24] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[25] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[26] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[27] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[28] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[29] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[30] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[31] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[32] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[33] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[34] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[35] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[36] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[37] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[38] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[39] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[40] “The NUP1 gene encodes an essential component of the yeast nuclear pore complex.”  Davis L.I.et.al.   2190694
[41] “DNA sequencing and analysis of 130 kb from yeast chromosome XV.”  Voss H.et.al.   9200815
[42] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XV.”  Dujon B.et.al.   9169874
[43] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[44] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[45] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[46] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[47] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[48] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[49] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[50] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[51] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[52] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[53] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[54] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[55] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[56] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[57] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[58] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[59] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[60] “The NUP1 gene encodes an essential component of the yeast nuclear pore complex.”  Davis L.I.et.al.   2190694
[61] “DNA sequencing and analysis of 130 kb from yeast chromosome XV.”  Voss H.et.al.   9200815
[62] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XV.”  Dujon B.et.al.   9169874
[63] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[64] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[65] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[66] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[67] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[68] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[69] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[70] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[71] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[72] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[73] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[74] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[75] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[76] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[77] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[78] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[79] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
Structure:
2BPT   4C31   4MBE   5OWU     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MSSNTSSVMS SPRVEKRSFS STLKSFFTNP NKKRPSSKKV FSSNLSYANH LEESDVEDTL 
61:	HVNKRKRVSG TSQHSDSLTQ NNNNAPIIIY GTENTERPPL LPILPIQRLR LLREKQRVRN 
121:	MRELGLIQST EFPSITSSVI LGSQSKSDEG GSYLCTSSTP SPIKNGSCTR QLAGKSGEDT 
181:	NVGLPILKSL KNRSNRKRFH SQSKGTVWSA NFEYDLSEYD AIQKKDNKDK EGNAGGDQKT 
241:	SENRNNIKSS ISNGNLATGP NLTSEIEDLR ADINSNRLSN PQKNLLLKGP ASTVAKTAPI 
301:	QESFVPNSER SGTPTLKKNI EPKKDKESIV LPTVGFDFIK DNETPSKKTS PKATSSAGAV 
361:	FKSSVEMGKT DKSTKTAEAP TLSFNFSQKA NKTKAVDNTV PSTTLFNFGG KSDTVTSASQ 
421:	PFKFGKTSEK SENHTESDAP PKSTAPIFSF GKQEENGDEG DDENEPKRKR RLPVSEDTNT 
481:	KPLFDFGKTG DQKETKKGES EKDASGKPSF VFGASDKQAE GTPLFTFGKK ADVTSNIDSS 
541:	AQFTFGKAAT AKETHTKPSE TPATIVKKPT FTFGQSTSEN KISEGSAKPT FSFSKSEEER 
601:	KSSPISNEAA KPSFSFPGKP VDVQAPTDDK TLKPTFSFTE PAQKDSSVVS EPKKPSFTFA 
661:	SSKTSQPKPL FSFGKSDAAK EPPGSNTSFS FTKPPANETD KRPTPPSFTF GGSTTNNTTT 
721:	TSTKPSFSFG APESMKSTAS TAAANTEKLS NGFSFTKFNH NKEKSNSPTS FFDGSASSTP 
781:	IPVLGKPTDA TGNTTSKSAF SFGTANTNGT NASANSTSFS FNAPATGNGT TTTSNTSGTN 
841:	IAGTFNVGKP DQSIASGNTN GAGSAFGFSS SGTAATGAAS NQSSFNFGNN GAGGLNPFTS 
901:	ATSSTNANAG LFNKPPSTNA QNVNVPSAFN FTGNNSTPGG GSVFNMNGNT NANTVFAGSN 
961:	NQPHQSQTPS FNTNSSFTPS TVPNINFSGL NGGITNTATN ALRPSDIFGA NAASGSNSNV 
1021:	TNPSSIFGGA GGVPTTSFGQ PQSAPNQMGM GTNNGMSMGG GVMANRKIAR MRHSKR