TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P32499
Protein Name:Nucleoporin NUP2
Length:720
Molecular Weight:77881.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Nucleoplasmic side3
Substrate

Cross database links:

DIP: DIP-859N DIP-859N DIP-859N DIP-859N
RefSeq: NP_013439.1   
Entrez Gene ID: 851048   
Pfam: PF00638    PF08911   
KEGG: sce:YLR335W    sce:YLR335W    sce:YLR335W    sce:YLR335W   

Gene Ontology

GO:0005739 C:mitochondrion
GO:0000790 C:nuclear chromatin
GO:0031965 C:nuclear membrane
GO:0005643 C:nuclear pore
GO:0042802 F:identical protein binding
GO:0005198 F:structural molecule activity
GO:0006348 P:chromatin silencing at telomere
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0070481 P:nuclear-transcribed mRNA catabolic process,...
GO:0006611 P:protein export from nucleus
GO:0006612 P:protein targeting to membrane
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0031990 P:mRNA export from nucleus in response to heat stress
GO:0006609 P:mRNA-binding (hnRNP) protein import into nucleus
GO:0070481 P:nuclear-transcribed mRNA catabolic process, non-stop decay
GO:0016973 P:poly(A)+ mRNA export from nucleus
GO:0000973 P:posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery
GO:0005515 F:protein binding

References (95)

[1] “NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex.”  Loeb J.D.J.et.al.   8443417
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.”  Johnston M.et.al.   9169871
[3] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[4] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[5] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[6] “Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex.”  Dilworth D.J.et.al.   11425876
[7] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[8] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[9] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[10] “Chromatin boundaries in budding yeast: the nuclear pore connection.”  Ishii K.et.al.   12062099
[11] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[12] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[13] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[14] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[15] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[16] “Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm.”  Gilchrist D.et.al.   14514698
[17] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[18] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[19] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[20] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[21] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[22] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[23] “Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import.”  Matsuura Y.et.al.   14532109
[24] “NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex.”  Loeb J.D.J.et.al.   8443417
[25] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.”  Johnston M.et.al.   9169871
[26] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[27] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[28] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[29] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[30] “Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex.”  Dilworth D.J.et.al.   11425876
[31] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[32] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[33] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[34] “Chromatin boundaries in budding yeast: the nuclear pore connection.”  Ishii K.et.al.   12062099
[35] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[36] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[37] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[38] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[39] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[40] “Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm.”  Gilchrist D.et.al.   14514698
[41] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[42] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[43] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[44] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[45] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[46] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[47] “Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import.”  Matsuura Y.et.al.   14532109
[48] “NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex.”  Loeb J.D.J.et.al.   8443417
[49] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.”  Johnston M.et.al.   9169871
[50] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[51] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[52] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[53] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[54] “Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex.”  Dilworth D.J.et.al.   11425876
[55] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[56] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[57] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[58] “Chromatin boundaries in budding yeast: the nuclear pore connection.”  Ishii K.et.al.   12062099
[59] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[60] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[61] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[62] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[63] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[64] “Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm.”  Gilchrist D.et.al.   14514698
[65] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[66] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[67] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[68] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[69] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[70] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[71] “Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import.”  Matsuura Y.et.al.   14532109
[72] “NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex.”  Loeb J.D.J.et.al.   8443417
[73] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.”  Johnston M.et.al.   9169871
[74] “The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus.”  Titov A.A.et.al.   10525531
[75] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[76] “Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.”  Solsbacher J.et.al.   11046143
[77] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[78] “Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex.”  Dilworth D.J.et.al.   11425876
[79] “The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex.”  Denning D.P.et.al.   11535617
[80] “GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.”  Bayliss R.et.al.   12372823
[81] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[82] “Chromatin boundaries in budding yeast: the nuclear pore connection.”  Ishii K.et.al.   12062099
[83] “Accelerating the rate of disassembly of karyopherin-cargo complexes.”  Gilchrist D.et.al.   11867631
[84] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[85] “A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.”  Pyhtila B.et.al.   12917401
[86] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[87] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[88] “Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm.”  Gilchrist D.et.al.   14514698
[89] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[90] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[91] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[92] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[93] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[94] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[95] “Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import.”  Matsuura Y.et.al.   14532109
Structure:
1UN0   2C1T     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAKRVADAQI QRETYDSNES DDDVTPSTKV ASSAVMNRRK IAMPKRRMAF KPFGSAKSDE 
61:	TKQASSFSFL NRADGTGEAQ VDNSPTTESN SRLKALNLQF KAKVDDLVLG KPLADLRPLF 
121:	TRYELYIKNI LEAPVKSIEN PTQTKGNDAK PAKVEDVQKS SDSSSEDEVK VEGPKFTIDA 
181:	KPPISDSVFS FGPKKENRKK DESDSENDIE IKGPEFKFSG TVSSDVFKLN PSTDKNEKKT 
241:	ETNAKPFSFS SATSTTEQTK SKNPLSLTEA TKTNVDNNSK AEASFTFGTK HAADSQNNKP 
301:	SFVFGQAAAK PSLEKSSFTF GSTTIEKKND ENSTSNSKPE KSSDSNDSNP SFSFSIPSKN 
361:	TPDASKPSFS FGVPNSSKNE TSKPVFSFGA ATPSAKEASQ EDDNNNVEKP SSKPAFNLIS 
421:	NAGTEKEKES KKDSKPAFSF GISNGSESKD SDKPSLPSAV DGENDKKEAT KPAFSFGINT 
481:	NTTKTADTKA PTFTFGSSAL ADNKEDVKKP FSFGTSQPNN TPSFSFGKTT ANLPANSSTS 
541:	PAPSIPSTGF KFSLPFEQKG SQTTTNDSKE ESTTEATGNE SQDATKVDAT PEESKPINLQ 
601:	NGEEDEVALF SQKAKLMTFN AETKSYDSRG VGEMKLLKKK DDPSKVRLLC RSDGMGNVLL 
661:	NATVVDSFKY EPLAPGNDNL IKAPTVAADG KLVTYIVKFK QKEEGRSFTK AIEDAKKEMK