TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P39685
Protein Name:Nucleoporin POM152
Length:1337
Molecular Weight:151653.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:3
Location1 / Topology2 / Orientation3: Nucleus1 / Single-pass type II membrane protein2
Substrate

Cross database links:

DIP: DIP-1520N DIP-1520N DIP-1520N DIP-1520N
RefSeq: NP_013848.1   
Entrez Gene ID: 855159   
KEGG: sce:YMR129W    sce:YMR129W    sce:YMR129W    sce:YMR129W   

Gene Ontology

GO:0005739 C:mitochondrion
GO:0070762 C:NDC1 complex
GO:0031965 C:nuclear membrane
GO:0005515 F:protein binding
GO:0005198 F:structural molecule activity
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0005641 C:nuclear envelope lumen
GO:0043495 F:protein anchor
GO:0051028 P:mRNA transport
GO:0006606 P:protein import into nucleus

References (56)

[1] “POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.”  Wozniak R.W.et.al.   8138573
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII.”  Bowman S.et.al.   9169872
[3] “The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex.”  Nehrbass U.et.al.   8682855
[4] “Topology and functional domains of the yeast pore membrane protein Pom152p.”  Tcheperegine S.E.et.al.   9988776
[5] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[6] “A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope.”  Marelli M.et.al.   11352933
[7] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[8] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[9] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[10] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[11] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[12] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[13] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[14] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[15] “POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.”  Wozniak R.W.et.al.   8138573
[16] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII.”  Bowman S.et.al.   9169872
[17] “The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex.”  Nehrbass U.et.al.   8682855
[18] “Topology and functional domains of the yeast pore membrane protein Pom152p.”  Tcheperegine S.E.et.al.   9988776
[19] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[20] “A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope.”  Marelli M.et.al.   11352933
[21] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[22] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[23] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[24] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[25] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[26] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[27] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[28] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[29] “POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.”  Wozniak R.W.et.al.   8138573
[30] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII.”  Bowman S.et.al.   9169872
[31] “The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex.”  Nehrbass U.et.al.   8682855
[32] “Topology and functional domains of the yeast pore membrane protein Pom152p.”  Tcheperegine S.E.et.al.   9988776
[33] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[34] “A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope.”  Marelli M.et.al.   11352933
[35] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[36] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[37] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[38] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[39] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[40] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[41] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[42] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[43] “POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.”  Wozniak R.W.et.al.   8138573
[44] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII.”  Bowman S.et.al.   9169872
[45] “The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex.”  Nehrbass U.et.al.   8682855
[46] “Topology and functional domains of the yeast pore membrane protein Pom152p.”  Tcheperegine S.E.et.al.   9988776
[47] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[48] “A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope.”  Marelli M.et.al.   11352933
[49] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[50] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[51] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[52] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[53] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[54] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[55] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[56] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
Structure:
5TVZ     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MEHRYNVFND TPRGNHWMGS SVSGSPRPSY SSRPNVNTTR RFQYSDDEPA EKIRPLRSRS 
61:	FKSTESNISD EKSRISERDS KDRYINGDKK VDIYSLPLIS TDVLEISKQR TFAVILFLII 
121:	QCYKIYDLVI LKSGLPLSGL LFKNYRFNFI SKYFIIDSFF LYVLPSFNIP RLTFKPWVVY 
181:	LQILAMLLLN IFISSDHEFV LISLIMTTWR KLYTKELSVT GSAINHHRIF DSSAHFKGAL 
241:	TIKILPENTA MFNPLHESYC LPMDTNLFKI NSIDVPIRIN STEEIEYIEL EYRDLYTNSV 
301:	ELRSLSKKDF KIIDNPKSFL KKDQSVLKSH SNDFEEGSTI RYLAVTLQDI GFYQIKKIVD 
361:	SKKLNLKIHQ SHLVVPYCPI ASITGTGSND RCIGDSDNVS FEIQGVPPMK LAYSKIVNGQ 
421:	TFSYVDSSLQ PEYFESPLQS SKSKQSFTQG ELNDLKWGRN QPVNINLDSS ITQDGKFAYK 
481:	IDKITDGLGN VVDFTSLPEE LKKRYDLSYN FNVHEVPRAA LEERFDPKSP TKRSIAIVFE 
541:	EIKNWISDIP YVISLSYTDA QDKSKKIMNV TTDSLTKVLQ ADLPGSYNLE YIESKFCPGE 
601:	IVGKSNVLVT MPVAPTMEVK SFPILDQCVG QVGLNFELSF TGAPPYYYNT KIYKLENGER 
661:	KLYDAKRYTS EGTRNRFSYS PPKEGNYEIV FDTVSNKLFT EPIKLEPVKE YTFKTSMRVK 
721:	PSASLKLHHD LKLCLGDHSS VPVALKGQGP FTLTYDIIET FSSKRKTFEI KEIKTNEYVI 
781:	KTPVFTTGGD YILSLVSIKD STGCVVGLSQ PDAKIQVRRD IPSAAFNFFE PIKEAKIKHG 
841:	SVTEIPLKLS GEGPFTVKFK HMDYDGNIVK EFENKFQNSY KPALKVSKEG LYQLVDIRDS 
901:	SCQGNVIYRN SLYKVSFLEK PKFAIQDNHH ITKVTENLFS KEEVCQGMEG TVDLALFGSP 
961:	PFILEYDLMA PNGHISTKKI QVATKYASLK LPNQIPGEYI TTIKAIFDGN YGESDIHFRE 
1021:	HQSELIIKQT VHPIPDVAFA DGGKTLRACA ANVDQISFLE PINLKFLQGE SPFSITFSVY 
1081:	HESTSRTDQY TIDNIDSENF SFEKLYEGMK LGNHAITIDS VVDANGCVNS LISGPRNQIL 
1141:	VSITDAPKIH ILDPSTEYCV GDYVAYQLNG VAPFMIKYEF NGIPLKSKER SSQFVRLASE 
1201:	PGIISITSLQ DSSSQCIVDF TNPKLKSEFD DLSLNIHPIP SVTVSQGNYV TEDIREGDQA 
1261:	EVIFSFEGTP PFSLTYVRTE ETDGKHGKRR SQVVETHKVT DIYSHEYKVI TSLQGTYEAI 
1321:	EITDAYCFAK NDLFFNN