TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P40477
Protein Name:Nucleoporin NUP159
Length:1460
Molecular Weight:158908.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Cytoplasmic side3
Substrate

Cross database links:

DIP: DIP-2314N DIP-2314N DIP-2314N DIP-2314N
RefSeq: NP_012151.1   
Entrez Gene ID: 854691   
KEGG: sce:YIL115C    sce:YIL115C    sce:YIL115C    sce:YIL115C   

Gene Ontology

GO:0031965 C:nuclear membrane
GO:0055126 C:Nup82 complex
GO:0005515 F:protein binding
GO:0005198 F:structural molecule activity
GO:0006406 P:mRNA export from nucleus
GO:0006999 P:nuclear pore organization
GO:0015031 P:protein transport
GO:0000054 P:ribosomal subunit export from nucleus
GO:0006407 P:rRNA export from nucleus
GO:0055085 P:transmembrane transport
GO:0031081 P:nuclear pore distribution
GO:0016973 P:poly(A)+ mRNA export from nucleus
GO:0006611 P:protein export from nucleus
GO:0000055 P:ribosomal large subunit export from nucleus
GO:0000056 P:ribosomal small subunit export from nucleus
GO:0097064 P:ncRNA export from nucleus

References (88)

[1] “A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes.”  Gorsch L.C.et.al.   7744966
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IX.”  Churcher C.M.et.al.   9169870
[3] “Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex.”  Hurwitz M.E.et.al.   9736720
[4] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[5] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[6] “Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells.”  Hodge C.A.et.al.   10523319
[7] “Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex.”  Bailer S.M.et.al.   10801828
[8] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[9] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[10] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[11] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[12] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[13] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[14] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[15] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[16] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[17] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[18] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[19] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[20] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[21] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[22] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[23] “A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes.”  Gorsch L.C.et.al.   7744966
[24] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IX.”  Churcher C.M.et.al.   9169870
[25] “Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex.”  Hurwitz M.E.et.al.   9736720
[26] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[27] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[28] “Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells.”  Hodge C.A.et.al.   10523319
[29] “Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex.”  Bailer S.M.et.al.   10801828
[30] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[31] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[32] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[33] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[34] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[35] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[36] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[37] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[38] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[39] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[40] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[41] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[42] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[43] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[44] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[45] “A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes.”  Gorsch L.C.et.al.   7744966
[46] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IX.”  Churcher C.M.et.al.   9169870
[47] “Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex.”  Hurwitz M.E.et.al.   9736720
[48] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[49] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[50] “Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells.”  Hodge C.A.et.al.   10523319
[51] “Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex.”  Bailer S.M.et.al.   10801828
[52] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[53] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[54] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[55] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[56] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[57] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[58] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[59] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[60] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[61] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[62] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[63] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[64] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[65] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[66] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[67] “A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes.”  Gorsch L.C.et.al.   7744966
[68] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IX.”  Churcher C.M.et.al.   9169870
[69] “Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex.”  Hurwitz M.E.et.al.   9736720
[70] “Functional characterization of a Nup159p-containing nuclear pore subcomplex.”  Belgareh N.et.al.   9843582
[71] “Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase.”  Seedorf M.et.al.   9891088
[72] “Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells.”  Hodge C.A.et.al.   10523319
[73] “Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex.”  Bailer S.M.et.al.   10801828
[74] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[75] “Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export.”  Straesser K.et.al.   10952996
[76] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[77] “Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex.”  Gleizes P.-E.et.al.   11739405
[78] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[79] “Deciphering networks of protein interactions at the nuclear pore complex.”  Allen N.P.et.al.   12543930
[80] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[81] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[82] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[83] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[84] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[85] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[86] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[87] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[88] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
Structure:
1XIP   3RRM   3PBP   3TKN   4DS1     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MSSLKDEVPT ETSEDFGFKF LGQKQILPSF NEKLPFASLQ NLDISNSKSL FVAASGSKAV 
61:	VGELQLLRDH ITSDSTPLTF KWEKEIPDVI FVCFHGDQVL VSTRNALYSL DLEELSEFRT 
121:	VTSFEKPVFQ LKNVNNTLVI LNSVNDLSAL DLRTKSTKQL AQNVTSFDVT NSQLAVLLKD 
181:	RSFQSFAWRN GEMEKQFEFS LPSELEELPV EEYSPLSVTI LSPQDFLAVF GNVISETDDE 
241:	VSYDQKMYII KHIDGSASFQ ETFDITPPFG QIVRFPYMYK VTLSGLIEPD ANVNVLASSC 
301:	SSEVSIWDSK QVIEPSQDSE RAVLPISEET DKDTNPIGVA VDVVTSGTIL EPCSGVDTIE 
361:	RLPLVYILNN EGSLQIVGLF HVAAIKSGHY SINLESLEHE KSLSPTSEKI PIAGQEQEEK 
421:	KKNNESSKAL SENPFTSANT SGFTFLKTQP AAANSLQSQS SSTFGAPSFG SSAFKIDLPS 
481:	VSSTSTGVAS SEQDATDPAS AKPVFGKPAF GAIAKEPSTS EYAFGKPSFG APSFGSGKSS 
541:	VESPASGSAF GKPSFGTPSF GSGNSSVEPP ASGSAFGKPS FGTPSFGSGN SSAEPPASGS 
601:	AFGKPSFGTS AFGTASSNET NSGSIFGKAA FGSSSFAPAN NELFGSNFTI SKPTVDSPKE 
661:	VDSTSPFPSS GDQSEDESKS DVDSSSTPFG TKPNTSTKPK TNAFDFGSSS FGSGFSKALE 
721:	SVGSDTTFKF GTQASPFSSQ LGNKSPFSSF TKDDTENGSL SKGSTSEIND DNEEHESNGP 
781:	NVSGNDLTDS TVEQTSSTRL PETPSDEDGE VVEEEAQKSP IGKLTETIKK SANIDMAGLK 
841:	NPVFGNHVKA KSESPFSAFA TNITKPSSTT PAFSFGNSTM NKSNTSTVSP MEEADTKETS 
901:	EKGPITLKSV ENPFLPAKEE RTGESSKKDH NDDPKDGYVS GSEISVRTSE SAFDTTANEE 
961:	IPKSQDVNNH EKSETDPKYS QHAVVDHDNK SKEMNETSKN NERSGQPNHG VQGDGIALKK 
1021:	DNEKENFDSN MAIKQFEDHQ SSEEDASEKD SRQSSEVKES DDNMSLNSDR DESISESYDK 
1081:	LEDINTDELP HGGEAFKARE VSASADFDVQ TSLEDNYAES GIQTDLSESS KENEVQTDAI 
1141:	PVKHNSTQTV KKEAVDNGLQ TEPVETCNFS VQTFEGDENY LAEQCKPKQL KEYYTSAKVS 
1201:	NIPFVSQNST LRLIESTFQT VEAEFTVLME NIRNMDTFFT DQSSIPLVKR TVRSINNLYT 
1261:	WRIPEAEILL NIQNNIKCEQ MQITNANIQD LKEKVTDYVR KDIAQITEDV ANAKEEYLFL 
1321:	MHFDDASSGY VKDLSTHQFR MQKTLRQKLF DVSAKINHTE ELLNILKLFT VKNKRLDDNP 
1381:	LVAKLAKESL ARDGLLKEIK LLREQVSRLQ LEEKGKKASS FDASSSITKD MKGFKVVEVG 
1441:	LAMNTKKQIG DFFKNLNMAK