TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P48837
Protein Name:Nucleoporin NUP57
Length:541
Molecular Weight:57499.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Cytoplasmic side3
Substrate

Cross database links:

DIP: DIP-866N DIP-866N DIP-866N DIP-866N
RefSeq: NP_011634.1   
Entrez Gene ID: 853016   
KEGG: sce:YGR119C    sce:YGR119C    sce:YGR119C    sce:YGR119C   

Gene Ontology

GO:0055125 C:Nic96 complex
GO:0031965 C:nuclear membrane
GO:0042802 F:identical protein binding
GO:0005198 F:structural molecule activity
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0051028 P:mRNA transport
GO:0006606 P:protein import into nucleus

References (64)

[1] “Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p.”  Grandi P.et.al.   7828598
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[3] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[4] “An 18.3 kb DNA fragment from yeast chromosome VII carries four unknown open reading frames, the gene for an Asn synthase, remnants of Ty and three tRNA genes.”  van Dyck L.et.al.   9046098
[5] “The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames.”  Hansen M.et.al.   8905931
[6] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[7] “A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly.”  Bucci M.et.al.   9725905
[8] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[9] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[10] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[11] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[12] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[13] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[14] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[15] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[16] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[17] “Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p.”  Grandi P.et.al.   7828598
[18] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[19] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[20] “An 18.3 kb DNA fragment from yeast chromosome VII carries four unknown open reading frames, the gene for an Asn synthase, remnants of Ty and three tRNA genes.”  van Dyck L.et.al.   9046098
[21] “The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames.”  Hansen M.et.al.   8905931
[22] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[23] “A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly.”  Bucci M.et.al.   9725905
[24] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[25] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[26] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[27] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[28] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[29] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[30] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[31] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[32] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[33] “Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p.”  Grandi P.et.al.   7828598
[34] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[35] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[36] “An 18.3 kb DNA fragment from yeast chromosome VII carries four unknown open reading frames, the gene for an Asn synthase, remnants of Ty and three tRNA genes.”  van Dyck L.et.al.   9046098
[37] “The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames.”  Hansen M.et.al.   8905931
[38] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[39] “A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly.”  Bucci M.et.al.   9725905
[40] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[41] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[42] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[43] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[44] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[45] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[46] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[47] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[48] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[49] “Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p.”  Grandi P.et.al.   7828598
[50] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[51] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[52] “An 18.3 kb DNA fragment from yeast chromosome VII carries four unknown open reading frames, the gene for an Asn synthase, remnants of Ty and three tRNA genes.”  van Dyck L.et.al.   9046098
[53] “The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames.”  Hansen M.et.al.   8905931
[54] “In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.”  Schlaich N.L.et.al.   9017593
[55] “A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly.”  Bucci M.et.al.   9725905
[56] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[57] “Proteomic analysis of nucleoporin interacting proteins.”  Allen N.P.et.al.   11387327
[58] “The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport.”  Bailer S.M.et.al.   11689687
[59] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[60] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[61] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[62] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[63] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[64] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MFGFSGSNNG FGNKPAGSTG FSFGQNNNNT NTQPSASGFG FGGSQPNSGT ATTGGFGANQ 
61:	ATNTFGSNQQ SSTGGGLFGN KPALGSLGSS STTASGTTAT GTGLFGQQTA QPQQSTIGGG 
121:	LFGNKPTTTT GGLFGNSAQN NSTTSGGLFG NKVGSTGSLM GGNSTQNTSN MNAGGLFGAK 
181:	PQNTTATTGG LFGSKPQGST TNGGLFGSGT QNNNTLGGGG LFGQSQQPQT NTAPGLGNTV 
241:	STQPSFAWSK PSTGSNLQQQ QQQQIQVPLQ QTQAIAQQQQ LSNYPQQIQE QVLKCKESWD 
301:	PNTTKTKLRA FVYNKVNETE AILYTKPGHV LQEEWDQAME KKPSPQTIPI QIYGFEGLNQ 
361:	RNQVQTENVA QARIILNHIL EKSTQLQQKH ELDTASRILK AQSRNVEIEK RILKLGTQLA 
421:	TLKNRGLPLG IAEEKMWSQF QTLLQRSEDP AGLGKTNELW ARLAILKERA KNISSQLDSK 
481:	LMVFNDDTKN QDSMSKGTGE ESNDRINKIV EILTNQQRGI TYLNEVLEKD AAIVKKYKNK 
541:	T