TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


9.A.15.1.1
Autophagy-related protein complex of Saccharomyces cerevisiae (Munakata and Klionsky, 2010).  Different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Phosphorylation regulates the Atg9 interaction with Atg23 and Atg27 (Feng et al. 2016).  Atg27 is required for Atg9 cycling, and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex (Yen et al. 2007). Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Matoba et al. 2020 reported that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 revealed a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. Thus, phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion. Guardia et al. 2020 solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. The functional importance of the cavity-lining residues which could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer has been suggested (Guardia et al. 2020). Transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes (Orii et al. 2021).

Accession Number:P53855
Protein Name:Autophagy-related protein 2
Length:1592
Molecular Weight:178414.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Substrate

Cross database links:

DIP: DIP-2620N DIP-2620N DIP-2620N DIP-2620N
Entrez Gene ID: 855479   
Pfam: PF09333   
KEGG: sce:YNL242W   

Gene Ontology

GO:0019898 C:extrinsic to membrane
GO:0000407 C:pre-autophagosomal structure
GO:0005515 F:protein binding
GO:0000045 P:autophagic vacuole assembly
GO:0032258 P:CVT pathway
GO:0000422 P:mitochondrion degradation
GO:0030242 P:peroxisome degradation
GO:0034727 P:piecemeal microautophagy of nucleus

References (11)

[1] “The DNA sequence of cosmid 14-5 from chromosome XIV reveals 21 open reading frames including a novel gene encoding a globin-like domain.”  Pandolfo D.et.al.   8896273
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications.”  Philippsen P.et.al.   9169873
[3] “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.”  Tsukada M.et.al.   8224160
[4] “Disruption of six unknown open reading frames from Saccharomyces cerevisiae reveals two genes involved in vacuolar morphogenesis and one gene required for sporulation.”  Saiz J.E.et.al.   10029994
[5] “A genomic screen identifies AUT8 as a novel gene essential for autophagy in the yeast Saccharomyces cerevisiae.”  Barth H.et.al.   11675007
[6] “Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways.”  Wang C.-W.et.al.   11382760
[7] “A unified nomenclature for yeast autophagy-related genes.”  Klionsky D.J.et.al.   14536056
[8] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[9] “The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure.”  Reggiori F.et.al.   14723849
[10] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[11] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAFWLPQNIQ KRLLLYVLQQ ISLFSNIDLS NLDVSIGSKS HFSFHDVNLS LDDLNIPNVQ 
61:	INEGIVDELV LKLTVSGGVE IDGSGLRFIM TPLYSSGSQE LHSDFLVKSI QDLTNSMLQF 
121:	SDPLTTYNRY KEDDISSSDS SSDLNSNIEA SKPAANGSYT LQNMRNKALN VALAKLKIAL 
181:	KDVTIRFIVN DRDPSDNIVE VHLESIQLIT TDANLRHINI ENITISSIQK QAVPDSPVHP 
241:	FNNDDLSQSV YLSKMEATSL YMSAMEEQSN EDPSEPQVTQ EEQENDKCKE SLMEINNLNI 
301:	AFKGLSSVND LRMSNIVIDI QDVHLAIHKI VEIKNSTLKN IIDIIVTHLD ANESFSCQDS 
361:	QSPSPDKQEP SALSSVDIKC IYLNLGQDIT VILKSFKLEQ KENNSLAFSL GSFYSNSSPL 
421:	TISHKTKPLL TGEQTPQSIA LNMGDELDII ISHDGIAHFF KIFQFVSKCM SFYQNKSKGM 
481:	MPQIASDTKR TVQLTSKAVK LSLKFPYFLL CFQVSPFIYD SNRELYIELV DVFKKLPSRC 
541:	TKILTMSSIT ISNLQSPLQL GSYDDTLKEA LIYSSVHAII KEVIFNEEYS GIVQLVEDIS 
601:	AFGKLFTDSK NSECTGKSKS KRGSFLQRSV RVLNSSRFVY KQSLSANFSL KIDSMKLKVS 
661:	EIIGPQFGSV EALLSNNFFA ITDDSQIVYF TKNLKVERKT PSLLEPQEIM SVVLNKAVNE 
721:	PVLYVHRRAN GKLKVIFNNI RIHYYARWLE ILKKNIGPDN ASSKDEPVSQ KLSKKQPTSG 
781:	FPWELKCLDC SLILHPFRLK SVMVIVLDNL TTGGSSFIPQ AKLLSKANTL FLIDDYQNFK 
841:	IQKDKNWPSL INFYAGQGFS AIGKIDTLNF LINKSDGALL LDCKIEQVGL SLCADSFQTF 
901:	CQLCIDLKYP QTFPDEEKFR TQLKNPIDVF KDIDCDLFNS AFIRENNHQN DYDSVHLVDS 
961:	FLDKTHEFNN GARSKLSSQG SYEMDSSSGT ATGGILLPHE SYLDSAQPKE EDTPPIASKE 
1021:	QERDVDIRGS IDVEKVVIKL FDGYDWKYTR KFIANTVEKL DKELSKAEAS SSKSNVPQSE 
1081:	ANIFDSIYIS ANKNNVTDLR RNLDGEIQGV QNSFSDVSKV NLRPSKHYKA LIQLNKVHVN 
1141:	LKNYRVDEPD ESNSDNSTDV LNRCVVSIYE FEIIDNVPTS TWNKFVTLLK HEPWPHSSPM 
1201:	FLLDLEFIRP IDFLQAVELV MQLNVAPLRL HVDQDTLEFL IRFLGFKDKR FELIDEYPDI 
1261:	VFIQKFSTNS IKLRLDYKPK KVDYAGLRSG QTSELMNFFT LDGSKIILKS VVLYGLNGFD 
1321:	ELNNKLKAIW TPDITKKQLP GVLEGLAPVR SFMAIGSGVK TLVTVLMSEY RQEGHLGRSL 
1381:	KKGGNVFLKT TTGDFVKLGV KLTSGTQAIL ENTEELFGGV GSNGRVYDAS KFGSADGADS 
1441:	DTAAVLDLDT LFEEDQLVGS KYSRIRDHEP TAVVIDMSSP GDHNEPTIVS LYADQPLDLP 
1501:	TGLKEAYSSL EKHMHIAYDA VWRAKGQMKD DKRGGPSAAA VYVARAAPVA IIRPLIGATE 
1561:	AVSKTLQGIA NQVDKTHNEQ INDKYKSNRT DS