TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:Q05166
Protein Name:Nucleoporin ASM4
Length:528
Molecular Weight:58793.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Cytoplasmic side3
Substrate

Cross database links:

DIP: DIP-1466N DIP-1466N DIP-1466N DIP-1466N
RefSeq: NP_010195.1   
Entrez Gene ID: 851470   
Pfam: PF05172   
KEGG: sce:YDL088C    sce:YDL088C    sce:YDL088C    sce:YDL088C   

Gene Ontology

GO:0031015 C:karyopherin docking complex
GO:0031965 C:nuclear membrane
GO:0005515 F:protein binding
GO:0005198 F:structural molecule activity
GO:0051301 P:cell division
GO:0007067 P:mitosis
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0000059 P:protein import into nucleus, docking
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0005643 C:nuclear pore
GO:0005543 F:phospholipid binding
GO:0003697 F:single-stranded DNA binding
GO:0031990 P:mRNA export from nucleus in response to heat stress
GO:0015031 P:protein transport

References (55)

[1] “Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae.”  Giot L.et.al.   7862092
[2] “The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames.”  Boskovic J.et.al.   8923743
[3] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IV.”  Jacq C.et.al.   9169867
[4] “Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.”  Marelli M.et.al.   9864357
[5] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[6] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[7] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[8] “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.”  Uetz P.et.al.   10688190
[9] “A comprehensive two-hybrid analysis to explore the yeast protein interactome.”  Ito T.et.al.   11283351
[10] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[11] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[12] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[13] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[14] “Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae.”  Giot L.et.al.   7862092
[15] “The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames.”  Boskovic J.et.al.   8923743
[16] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IV.”  Jacq C.et.al.   9169867
[17] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[18] “Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.”  Marelli M.et.al.   9864357
[19] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[20] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[21] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[22] “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.”  Uetz P.et.al.   10688190
[23] “A comprehensive two-hybrid analysis to explore the yeast protein interactome.”  Ito T.et.al.   11283351
[24] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[25] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[26] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[27] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[28] “Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae.”  Giot L.et.al.   7862092
[29] “The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames.”  Boskovic J.et.al.   8923743
[30] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IV.”  Jacq C.et.al.   9169867
[31] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[32] “Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.”  Marelli M.et.al.   9864357
[33] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[34] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[35] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[36] “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.”  Uetz P.et.al.   10688190
[37] “A comprehensive two-hybrid analysis to explore the yeast protein interactome.”  Ito T.et.al.   11283351
[38] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[39] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[40] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[41] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[42] “Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae.”  Giot L.et.al.   7862092
[43] “The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames.”  Boskovic J.et.al.   8923743
[44] “The nucleotide sequence of Saccharomyces cerevisiae chromosome IV.”  Jacq C.et.al.   9169867
[45] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[46] “Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p.”  Marelli M.et.al.   9864357
[47] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[48] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[49] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[50] “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.”  Uetz P.et.al.   10688190
[51] “A comprehensive two-hybrid analysis to explore the yeast protein interactome.”  Ito T.et.al.   11283351
[52] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[53] “Targets of the cyclin-dependent kinase Cdk1.”  Ubersax J.A.et.al.   14574415
[54] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[55] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MFGIRSGNNN GGFTNLTSQA PQTTQMFQSQ SQLQPQPQPQ PQQQQQHLQF NGSSDASSLR 
61:	FGNSLSNTVN ANNYSSNIGN NSINNNNIKN GTNNISQHGQ GNNPSWVNNP KKRFTPHTVI 
121:	RRKTTKQNSS SDINQNDDSS SMNATMRNFS KQNQDSKHNE RNKSAANNDI NSLLSNFNDI 
181:	PPSVTLQDWQ REDEFGSIPS LTTQFVTDKY TAKKTNRSAY DSKNTPNVFD KDSYVRIANI 
241:	EQNHLDNNYN TAETNNKVHE TSSKSSSLSA IIVFGYPESI SNELIEHFSH FGHIMEDFQV 
301:	LRLGRGINPN TFRIFHNHDT GCDENDSTVN KSITLKGRNN ESNNKKYPIF TGESWVKLTY 
361:	NSPSSALRAL QENGTIFRGS LIGCIPYSKN AVEQLAGCKI DNVDDIGEFN VSMYQNSSTS 
421:	STSNTPSPPN VIITDGTLLR EDDNTPAGHA GNPTNISSPI VANSPNKRLD VIDGKLPFMQ 
481:	NAGPNSNIPN LLRNLESKMR QQEAKYRNNE PAGFTHKLSN WLFGWNDL