TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


9.A.15.1.1
Autophagy-related protein complex of Saccharomyces cerevisiae (Munakata and Klionsky, 2010).  Different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Phosphorylation regulates the Atg9 interaction with Atg23 and Atg27 (Feng et al. 2016).  Atg27 is required for Atg9 cycling, and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex (Yen et al. 2007). Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Matoba et al. 2020 reported that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 revealed a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. Thus, phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion. Guardia et al. 2020 solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. The functional importance of the cavity-lining residues which could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer has been suggested (Guardia et al. 2020). Transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes (Orii et al. 2021).

Accession Number:Q06628
Protein Name:Autophagy-related protein 13
Length:738
Molecular Weight:83281.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Location1 / Topology2 / Orientation3: Cytoplasm1
Substrate

Cross database links:

DIP: DIP-1191N DIP-1191N DIP-1191N DIP-1191N
Entrez Gene ID: 856315   
Pfam: PF10033   
KEGG: sce:YPR185W   

Gene Ontology

GO:0034273 C:Atg1p signaling complex
GO:0019898 C:extrinsic to membrane
GO:0005515 F:protein binding
GO:0019887 F:protein kinase regulator activity
GO:0032147 P:activation of protein kinase activity
GO:0032258 P:CVT pathway
GO:0016236 P:macroautophagy
GO:0000422 P:mitochondrion degradation
GO:0034727 P:piecemeal microautophagy of nucleus

References (15)

[1] “Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae.”  Funakoshi T.et.al.   9224892
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI.”  Bussey H.et.al.   9169875
[3] “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.”  Tsukada M.et.al.   8224160
[4] “Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting.”  Scott S.V.et.al.   10837477
[5] “Dissection of autophagosome biogenesis into distinct nucleation and expansion steps.”  Abeliovich H.et.al.   11086004
[6] “Tor-mediated induction of autophagy via an Apg1 protein kinase complex.”  Kamada Y.et.al.   10995454
[7] “Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p.”  Wang Z.et.al.   11486014
[8] “A unified nomenclature for yeast autophagy-related genes.”  Klionsky D.J.et.al.   14536056
[9] “Global analysis of protein localization in budding yeast.”  Huh W.-K.et.al.   14562095
[10] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[11] “The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure.”  Reggiori F.et.al.   14723849
[12] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[13] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[14] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[15] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
Structure:
6KBM   6KBN     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MVAEEDIEKQ VLQLIDSFFL KTTLLICSTE SSRYQSSTEN IFLFDDTWFE DHSELVSELP 
61:	EIISKWSHYD GRKELPPLVV ETYLDLRQLN SSHLVRLKDH EGHLWNVCKG TKKQEIVMER 
121:	WLIELDNSSP TFKSYSEDET DVNELSKQLV LLFRYLLTLI QLLPTTELYQ LLIKSYNGPQ 
181:	NEGSSNPITS TGPLVSIRTC VLDGSKPILS KGRIGLSKPI INTYSNALNE SNLPAHLDQK 
241:	KITPVWTKFG LLRVSVSYRR DWKFEINNTN DELFSARHAS VSHNSQGPQN QPEQEGQSDQ 
301:	DIGKRQPQFQ QQQQPQQQQQ QQQQQQRQHQ VQTQQQRQIP DRRSLSLSPC TRANSFEPQS 
361:	WQKKVYPISR PVQPFKVGSI GSQSASRNPS NSSFFNQPPV HRPSMSSNYG PQMNIEGTSV 
421:	GSTSKYSSSF GNIRRHSSVK TTENAEKVSK AVKSPLQPQE SQEDLMDFVK LLEEKPDLTI 
481:	KKTSGNNPPN INISDSLIRY QNLKPSNDLL SEDLSVSLSM DPNHTYHRGR SDSHSPLPSI 
541:	SPSMHYGSLN SRMSQGANAS HLIARGGGNS STSALNSRRN SLDKSSNKQG MSGLPPIFGG 
601:	ESTSYHHDNK IQKYNQLGVE EDDDDENDRL LNQMGNSATK FKSSISPRSI DSISSSFIKS 
661:	RIPIRQPYHY SQPTTAPFQA QAKFHKPANK LIDNGNRSNS NNNNHNGNDA VGVMHNDEDD 
721:	QDDDLVFFMS DMNLSKEG