TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


9.A.15.1.1
Autophagy-related protein complex of Saccharomyces cerevisiae (Munakata and Klionsky, 2010).  Different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Phosphorylation regulates the Atg9 interaction with Atg23 and Atg27 (Feng et al. 2016).  Atg27 is required for Atg9 cycling, and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex (Yen et al. 2007). Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Matoba et al. 2020 reported that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 revealed a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. Thus, phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion. Guardia et al. 2020 solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. The functional importance of the cavity-lining residues which could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer has been suggested (Guardia et al. 2020). Transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes (Orii et al. 2021).

Accession Number:Q12527
Protein Name:Autophagy-related protein 11
Length:1178
Molecular Weight:135025.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Location1 / Topology2 / Orientation3: Membrane1 / Peripheral membrane protein2
Substrate

Cross database links:

DIP: DIP-1492N DIP-1492N DIP-1492N
Entrez Gene ID: 856162   
Pfam: PF10377   
KEGG: sce:YPR049C   

Gene Ontology

GO:0019898 C:extrinsic to membrane
GO:0000407 C:pre-autophagosomal structure
GO:0042802 F:identical protein binding
GO:0032947 F:protein complex scaffold
GO:0032258 P:CVT pathway
GO:0000422 P:mitochondrion degradation
GO:0030242 P:peroxisome degradation
GO:0034727 P:piecemeal microautophagy of nucleus
GO:0034497 P:protein localization to pre-autophagosomal structure

References (12)

[1] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI.”  Bussey H.et.al.   9169875
[2] “Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway.”  Harding T.M.et.al.   8663607
[3] “Tor-mediated induction of autophagy via an Apg1 protein kinase complex.”  Kamada Y.et.al.   10995454
[4] “Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole.”  Kim J.et.al.   11309418
[5] “Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway.”  Shintani T.et.al.   12479808
[6] “A unified nomenclature for yeast autophagy-related genes.”  Klionsky D.J.et.al.   14536056
[7] “Global analysis of protein localization in budding yeast.”  Huh W.-K.et.al.   14562095
[8] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[9] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[10] “Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy.”  Okamoto K.et.al.   19619494
[11] “Atg32 is a mitochondrial protein that confers selectivity during mitophagy.”  Kanki T.et.al.   19619495
[12] “Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p.”  Suzuki K.et.al.   20639194
Structure:
6VZF     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MADADEYSTA PTQQEITPLQ TTATIINAIS GECITTNVDF FVSLDKFKQF IARKWKIPPD 
61:	QLLILLPYGN KLKPSMFKEL LINRSFTLND FYVYDRRLFS LVSKPTPTNL LTSKDSNPMN 
121:	SPNSNDLTET LEYLIKNSHI SQYQGSDTIM IKPMPSPLED ADVDLSRLNY HSVTSLLTTN 
181:	LGWLSALEID VHYFKSLIPD IIAHIKRIFD GLTVCSQYLK LYCFDVESLY NSNVQFLNQL 
241:	VDNGMTSKWE KCFNDTLSKL TALEGDSLQK FINIESLLEN EKSVKILNHS INGKLNKIKR 
301:	EIDENASFRD IITVNIDRLR QMFTPNESKF ELEDQMAESF EVLVSEMRTR SRNVLDKEEE 
361:	EFNSQEFLKS MNVMLEKDKK ESVKTLFTIS QALYSQIGEL IDLKKSLQKH AVAILGNIAF 
421:	TQMEILGIKR LLLNECNKDL ELYKKYEVEF AQVEDLPLIY GLYLIEKYRR LSWFQQILSF 
481:	ISNFNQDLEL FKQNELRTRN KWVKNFGSIA TVFCEDLLSS SDFKRLNEYH SHTSPPNEDE 
541:	EDENENSIAN YRQDLVKVSQ AIDNYMTQIK ETDVSEPIID LLSKTLFETK RFHIIYSNFK 
601:	NNNNNSSNGN SISPEGSIAL KSDDVVKGYK TRIKKLESLL HEFQYSDIGH WPQGVLNTHL 
661:	KPFRGSATSI NKKKFLGASV LLEPANISEV NIDSVSQANN HQIQELESNV DDLLHQLQLL 
721:	KEENNRKSMQ ISEMGKKISD LEVEKTAYRE TLTNLNQELA RLTNEEQSHR TEIFTLNASF 
781:	KKQLNDIISQ DNEKIEKLTG DYDDVSKSRE RLQMDLDESN KKHEQEVNLL KADIERLGKQ 
841:	IVTSEKSYAE TNSSSMEKGE KFETIPLAED PGRENQISAY TQTLQDRIFD IISTNIFILE 
901:	NIGLLLTFDN NNNIQIRRVK GLKKGTAQSN ILDESTQMLD AHDNSLIKSP VFQKLKDEYE 
961:	LIKSVANGSE KDTQQSIFLG NITQLYDNKL YEVAVIRRFK DIETLAKKLT KENKIKRTLL 
1021:	ERFQREKVTL RNFQIGDLAL FLPTRENVNS VGSMSSSTSS LSSSFSSVDL STPPPLDAMS 
1081:	IQSSPSVIHS NVINQASISG RDKNKLMRPW AAFTAFEEST RYFLKDEKGL TKGKEWFVGR 
1141:	IVTLEHFVAD SPSNNPFRLP KGSVWFQVTA VVVSYQGV