| |
---|---|
Accession Number: | Q8IYB3 |
Protein Name: | Serine/arginine repetitive matrix protein 1 aka Srm160 aka Srrm1 |
Length: | 904 |
Molecular Weight: | 102335.00 |
Species: | Homo sapiens (Human) [9606] |
Number of TMSs: | 1 |
Location1 / Topology2 / Orientation3: | Nucleus matrix1 |
Substrate | messenger RNA |
Cross database links:
RefSeq: | NP_005830.2 |
---|---|
Entrez Gene ID: | 10250 |
Pfam: | PF01480 |
OMIM: |
605975 gene |
KEGG: | hsa:10250 |
Gene Ontology
GO:0016363
C:nuclear matrix
GO:0016607
C:nuclear speck
GO:0005681
C:spliceosomal complex
GO:0003677
F:DNA binding
GO:0005515
F:protein binding
GO:0003723
F:RNA binding
GO:0006397
P:mRNA processing
GO:0000375
P:RNA splicing, via transesterification react...
| |
References (31)[1] “A coactivator of pre-mRNA splicing.” Blencowe B.J.et.al. 9531537 [2] “The DNA sequence and biological annotation of human chromosome 1.” Gregory S.G.et.al. 16710414 [3] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [4] “The SRm160/300 splicing coactivator is required for exon-enhancer function.” Eldridge A.G.et.al. 10339552 [5] “The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions.” Le Hir H.et.al. 11118221 [6] “Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions.” Le Hir H.et.al. 10809668 [7] “The SRm160/300 splicing coactivator subunits.” Blencowe B.J.et.al. 10668804 [8] “Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.” Lykke-Andersen J.et.al. 11546874 [9] “The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling.” Lejeune F.et.al. 12093754 [10] “SRm160 splicing coactivator promotes transcript 3'-end cleavage.” McCracken S.et.al. 11739730 [11] “Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.” Jurica M.S.et.al. 11991638 [12] “An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation.” McCracken S.et.al. 12944400 [13] “The spatial targeting and nuclear matrix binding domains of SRm160.” Wagner S.et.al. 12624182 [14] “Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry.” Brill L.M.et.al. 15144186 [15] “In vitro FRAP reveals the ATP-dependent nuclear mobilization of the exon junction complex protein SRm160.” Wagner S.et.al. 15024032 [16] “Large-scale characterization of HeLa cell nuclear phosphoproteins.” Beausoleil S.A.et.al. 15302935 [17] “Global phosphoproteome of HT-29 human colon adenocarcinoma cells.” Kim J.-E.et.al. 16083285 [18] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.” Olsen J.V.et.al. 17081983 [19] “A probability-based approach for high-throughput protein phosphorylation analysis and site localization.” Beausoleil S.A.et.al. 16964243 [20] “Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra.” Yu L.-R.et.al. 17924679 [21] “Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry.” Molina H.et.al. 17287340 [22] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.” Wang B.et.al. 19007248 [23] “Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column.” Imami K.et.al. 18187866 [24] “Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment.” Carrascal M.et.al. 19367720 [25] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.” Daub H.et.al. 18691976 [26] “A quantitative atlas of mitotic phosphorylation.” Dephoure N.et.al. 18669648 [27] “Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.” Han G.et.al. 18318008 | |
Structure: | |
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MDAGFFRGTS AEQDNRFSNK QKKLLKQLKF AECLEKKVDM SKVNLEVIKP WITKRVTEIL 61: GFEDDVVIEF IFNQLEVKNP DSKMMQINLT GFLNGKNARE FMGELWPLLL SAQENIAGIP 121: SAFLELKKEE IKQRQIEQEK LASMKKQDED KDKRDKEEKE SSREKRERSR SPRRRKSRSP 181: SPRRRSSPVR RERKRSHSRS PRHRTKSRSP SPAPEKKEKT PELPEPSVKV KEPSVQEATS 241: TSDILKVPKP EPIPEPKEPS PEKNSKKEKE KEKTRPRSRS RSKSRSRTRS RSPSHTRPRR 301: RHRSRSRSYS PRRRPSPRRR PSPRRRTPPR RMPPPPRHRR SRSPVRRRRR SSASLSGSSS 361: SSSSSRSRSP PKKPPKRTSS PPRKTRRLSP SASPPRRRHR PSPPATPPPK TRHSPTPQQS 421: NRTRKSRVSV SPGRTSGKVT KHKGTEKRES PSPAPKPRKV ELSESEEDKG GKMAAADSVQ 481: QRRQYRRQNQ QSSSDSGSSS SSEDERPKRS HVKNGEVGRR RRHSPSRSAS PSPRKRQKET 541: SPRGRRRRSP SPPPTRRRRS PSPAPPPRRR RTPTPPPRRR TPSPPPRRRS PSPRRYSPPI 601: QRRYSPSPPP KRRTASPPPP PKRRASPSPP PKRRVSHSPP PKQRSSPVTK RRSPSLSSKH 661: RKGSSPSRST REARSPQPNK RHSPSPRPRA PQTSSSPPPV RRGASSSPQR RQSPSPSTRP 721: IRRVSRTPEP KKIKKAASPS PQSVRRVSSS RSVSGSPEPA AKKPPAPPSP VQSQSPSTNW 781: SPAVPVKKAK SPTPSPSPPR NSDQEGGGKK KKKKKDKKHK KDKKHKKHKK HKKEKAVAAA 841: AAAAVTPAAI AAATTTLAQE EPVAAPEPKK ETESEAEDNL DDLEKHLREK ALRSMRKAQV 901: SPQS